
» Snuffleupagus
A elephant with some salt,
in your php stack,
killing bug classes,
and virtual-patching,
what is remaining.

1 / 71

» Backlog
We gave subsets of this presentation at various conferences,
using various themes.

2 / 71

» At an invite-only conference

♥ BerlinSides ♥

3 / 71

» At a small conference in Switzerland

♥ Black Alps ♥

4 / 71

» At a big conference in Luxembourg

♥ Hacklu ♥

5 / 71

» Can you guess our current theme?

6 / 71

» Hint

7 / 71

» Hellooooooooo

8 / 71

» Good evening
We're super thrilled to be here
We're working together at the same (French¹) company
In the security team.
It's called NBS System
And it's a hosting company, you know, for websites.
Also known as the cloud.

¹ Hence why we have the same lovely accent than everyone here.

9 / 71

» Story time!

10 / 71

» Your security team

Fig 1. They are kick-ass and super-cool.

11 / 71

» There is a new $customer website

Fig 1. The marketing is so happy about it, it's so shiny

12 / 71

» Using a fixed version wordpress

Fig 1. Your security team reaction

13 / 71

» The web agency

Fig 1. Artistic's depiction of your web agency

14 / 71

» The agency was convincing

Fig 1. They told the management that they take security seriously

15 / 71

» Management

Fig 1. Management says that everything will be fine.

16 / 71

» Your security team isn't convinced

Fig 1. This isn't going to end well

17 / 71

» Hackers on the internet

Fig 1. Wow, look at this old-school wordpress, noice

18 / 71

» Surprise disclosure of a wordpress' RCE
on FD

Fig 1. Your security team is "busy" at a conference: they aren't reachable

19 / 71

» Kiddies are pwning your website

Fig 1. Kiddies, launching exploits

20 / 71

» Your DB is encrypted by a lame
ransomware

Fig 1. "Wait, what backups are you talking about", replied your admin

21 / 71

» Public image

Fig 1. Your company is looking like a bunch of idiots.

22 / 71

» Fixing the website

Fig 1. Your security team spent their week-end removing webshellz

23 / 71

» What problem are we trying to solve?
1. We're hosting several thousands of websites,

most of them are written in PHP.

2. PHP is an old-school trigger-happy footgun language,
with massively creative users.

How do we prevent our customers from being pwned on a daily basis?

24 / 71

» What we were doing so far
We have a dedicated security team
We have cool OS-level hardening (grsecurity ♥)
We have custom IDS
We have a fancy WAF called naxsi

But not everything is patchable with those and we can not² touch the PHP code.

¹ And to be honest, we don't want to.

25 / 71

https://naxsi.com/

» Can't we harden PHP itself?
Suhosin did it, and it worked great, but we're in 2018 and:

It has some useless features
It lacks some useful features
It is not very industrializable
It doesn't fly on PHP7

26 / 71

https://suhosin.org/

» So we wrote our own hardening module,
in C!

Fig 1. Snuffleupagus

27 / 71

» Snuffleupagus?

28 / 71

» Snuffleupagus?

29 / 71

» Snuffleupagus?!

Aloysius Snuffleupagus, more commonly known as Mr. Snuffleupagus,
Snuffleupagus or Snuffy for short, is one of the characters on Sesame Street.

He was created as a woolly mammoth, without tusks or (visible) ears, and has
a long thick pointed tail, similar in shape to that of a dinosaur or other reptile.

— wikipedia

30 / 71

» Where does it live
Apache

mod_cgi mod_auth mod_heartmonitor

PHP

pdo.so snuffleupagus.so sodium.so

Filesystem

index.php admin.php backdoor.php

31 / 71

» PHP-level virtual patching

32 / 71

» The issue

disable_function can globally forbid usage of arbitrary functions
Your CMS is using system for its update mechanism
Either forbid system or keep your website up to date
This is why we can't have nice things.

33 / 71

» How we're helping

Disable system globally:

sp.disable_functions.function("system").drop();

Allows system calls in a specific file

sp.disable_functions.function("system").filename("up.php").allow();

sp.disable_functions.function("system").drop();

Allow system calls in a file, with a matching sha256:

sp.disable_functions.function("system").filename("up.php").hash("13..a").allow();

sp.disable_functions.function("system").drop();

We even provide a user-friendly script to generate a configuration file, freezing
dangerous functions usage.

34 / 71

» What can we do with php-level
virtual-patching?

35 / 71

» About the syntax

We designed¹ the rules syntax like this:

24 different filters
Documentation for everything
Lots of examples

to be able to easily patch:

every wordpress CVE since 2010
the RIPS advent calendar
a lot of high-profile web exploits
our own 0dayz ;)

¹ Designing configuration formats is awful, if you're wondering.

36 / 71

» Examples
sp.disable_function("PHPThingy::MyClass::method_one>internal_func").drop();

sp.disable_function("admin_cron_thingy").cidr("127.0.0.1/32").allow();

sp.disable_function("admin_cron_thingy").drop();

sp.disable_function.function("render_tab3").var("_REQUEST[tab]").value_r("\"").drop();

sp.disable_function.function("system").pos("0").value_r("[^a-z]").drop();

37 / 71

» Regarding this morning
sp.disable_function.filename("change.php").param("confirmpassword").param_type("array").drop();

sp.disable_function.filename("change.php").param("newpassword").param_type("array").drop();

sp.disable_function.filename("change.php").param("oldpassword").param_type("array").drop();

sp.disable_function.filename("change.php").param("login").param_type("array").drop();

Will this work ?

sp.disable_function.function("ldap_bind").ret("false").drop();

38 / 71

» What can we do with this?

39 / 71

» system() injections

40 / 71

» What the documentation is saying

When allowing user-supplied data to be passed to this function, use
escapeshellarg() or escapeshellcmd() to ensure that users cannot trick the system
into executing arbitrary commands.

» What people are doing

<?php

$ip_addr = system("dig +short " . $_GET["address"]);

echo "The ip adress of $_GET['address'] is $ip_addr";

?>

41 / 71

» What we're getting

CVE-2017-7692: Authen RCE on SquirrelMail
CVE-2016-9565: Unauth RCE on Nagios Core
CVE-2014-1610: Unauth RCE on DokuWiki
Every single shitty modem/router/switch/IoT.

» How we're (kinda) killing it

sp.disable_function.function("system").param("command").value_r("[$|;&\n`]").drop();

42 / 71

» mail related RCE

43 / 71

» What the documentation is saying

The additional_parameters parameter can be used to pass additional flags as
command line options to the program configured to be used when sending
mail

Known since 2011, popularized by RIPS.

» What people are doing

// Olol, sending some emails

mail(..., $_GET['a']);

44 / 71

http://esec-pentest.sogeti.com/posts/2011/11/03/using-mail-for-remote-code-execution.html
https://www.ripstech.com/blog/2016/roundcube-command-execution-via-email/

» What we're getting

CVE-2017-7692: Authen RCE in SquirrelMail
CVE-2016-10074: RCE in SwiftMailer
CVE-2016-10033: RCE in PHPMailer
CVE-2016-9920: Unauth RCE in Roundcube
RCE in a lot of webmails

» How we're (kinda) killing it

sp.disable_function.function("mail").param("additional_parameters").value_r("\-").drop();

45 / 71

» Writing rules
Fig 1. When the security team realises that it needs to write a lot of rules.

46 / 71

» Nobody has time to write rules
So lets kill some bug classes!

47 / 71

» Session-cookie stealing via XSS
Like suhosin, we're encrypting cookies with a secret key tied to:

The user-agent of the client
A static key
And environnment variable tat you can set to:

The ip address¹
The TLS extended master key
…

¹ Not the best idea ever: in 2017, people are roaming a lot.

48 / 71

» Misc cookies things
If you're coming over https, your cookies get the secure flag
If cookies are encrypted, they are httpOnly
Support for SameSite to kill CSRF

49 / 71

» RCE via file-upload

50 / 71

» What the documentation is saying

Not validating which file you operate on may mean that users can access
sensitive information in other directories.

» What people are doing

$uploaddir = '/var/www/uploads/';

$uploadfile = $uploaddir . basename($_FILES['userfile']['name']);

move_uploaded_file($_FILES['userfile']['tmp_name'], $uploadfile)

51 / 71

» What we're getting

CVE-2001-1032 : RCE in PHP-Nuke via file-upload
...
15 years later
...
CVE-2016-9187 : RCE in Moodle via file-upload

There are 850 CVE entries that match your search
— cve.mitre.org

52 / 71

» How we're killing it

Suhosin style:

sp.upload_validation.script("tests/upload_validation.sh").enable();

One trick is to rely on vld¹ to ensure file doesn't contain php code:

$ php -d vld.execute=0 -d vld.active=1 -d extension=vld.so $file

¹ Vulcan Logic Disassembler. (yes)

53 / 71

» Unserialize

54 / 71

» What the documentation is saying

Do not pass untrusted user input to unserialize() [...]. Unserialization can result
in code being loaded and executed [...].

» What people are doing

$my_object = unserialize($_GET['o']);

55 / 71

» Small aparté about unserialize

Fig 1. The security team reading PHP's mailing list

56 / 71

» What we're getting

CVE-2012-5692: unauth RCE in IP.Board
CVE-2014-1691: Unauth RCE in Horde
CVE-2015-7808: Unauth RCE in vBulletin
CVE-2015-8562: Unauth RCE in Joomla
CVE-2016-????: Unauth RCE in Observium (leading to remote root)
CVE-2016-5726: Unauth RCE in Simple Machines Forums
CVE-2016-4010: Unauth RCE in Magento
CVE-2017-2641: Unauth RCE in Moodle

» How we're killing it

Php will discard any garbage found at the end of a serialized object: we're simply
appending a hmac at the end of strings generated by serialize.

It looks like this:

s:1:"a";650609b417904d0d9bbf1fc44a975d13ecdf6b02b715c1a06271fb3b673f25b1

57 / 71

» rand and its friends

58 / 71

» What the documentation is saying

This function does not generate cryptographically secure values, and should
not be used for cryptographic purposes.

» What people are doing

$password_reset_token = rand(1,9) . rand(1,9) . [...] . rand(1, 9);

59 / 71

» What we're getting

CVE-2008-4102: Auth bypass in Joomla
...
CVE-2015-5267: Auth bypass in Moodle
Various captcha bypasses

» How we're killing it

We're simply replacing every call to rand and mt_rand with random_int.

60 / 71

» XXE

61 / 71

» What the documentation is saying

Not a single warning ;)

» What people are doing

$xmlfile = file_get_contents('php://input');

$dom = new DOMDocument();

$dom->loadXML($xmlfile);

$data = simplexml_import_dom($dom);

62 / 71

» What we're getting

CVE-2011-4107: Authen LFI in PHPMyAdmin
...
CVE-2015-5161: Unauth arbitrary file reading on Magento

» How we're killing it

We're calling libxml_disable_entity_loader(true) at startup, and nop'ing its call.

63 / 71

» Unrelated misc things
chmod hardening

sp.disable_function.function("chmod").param("mode").value_r("7$");

sp.disable_function.function("chmod").param("mode").value_r("o\+w");

backdoors detection

sp.disable_function.function("ini_get").param("var_name").value("open_basedir");

sp.disable_function.function("is_callable").param("var").value("system");

prevent execution of writeable files

sp.readonly_exec.enable();

Ghetto sqli detection

sp.disable_functions.function_r("mysqli?_query").ret("FALSE").dump().allow();

sp.disable_functions.function_r("PDO::query").ret("FALSE").dump().allow();

64 / 71

» Harvesting 0days
If you've got something like this

$line = system("grep $var dict.txt");

You can do something like that

sp.disable_function.function("system").var("var").regexp("[;`&|\n]").dump().allow();

And wait until someone finds a vuln to collect a working exploit.

65 / 71

» Performance impact
Currently deployed on (at least) one Alexa1 top 1k website.
We're using it on some customers
No performance impact noticed
We're (kinda) only hooking the functions that you specify
Filter-matching is written with performances in mind

66 / 71

» What's left to do
Killing more bug-classes, like sloppy-comparisons and SQLI¹
Improve the virtual patching capabilities
Party party party

¹ We're working on it ;)

67 / 71

» How to get this wonder?
https://github.com/nbs-system/snuffleupagus for the sauce code
https://snuffleupagus.rtfd.io for the (amazing) documentation
Come talk to us, we're friendly!

68 / 71

https://github.com/nbs-system/snuffleupagus
https://snuffleupagus.rtfd.io/

» Mandatory final quote

There are only two kinds of languages: the ones people complain about and
the ones nobody uses.

— Bjarne Stroustrup

Did you know that more than ¾ of the web is using PHP?

69 / 71

» Cheers
The RIPS people for their awesome scanner
SectionEins for Suhosin and inspiration
The HardenedPHP project for leading the way
websec.fr for showcasting our most convoluted exploits
Our guinea pigs friends who alpha-tested everything
Folks that called us names gave us constructive feedback
Pass the Salt for accepting our talk ♥

70 / 71

71 / 71

