
No way, JOSE!
Lessons for authors and implementers of open standards

Fraser Tweedale
@hackuador

July 3, 2018

A journey. . .

JOSE

I JSON Object Signing and Encryption
I IETF WG formed 2011, RFCs 2015
I used in OpenID Connect, ACME

JOSE & me

I I wrote a JOSE library for Haskell
I I participated in IETF discussions
I JOSE has lots of problems (sorry. . .)

What is a standard?

Do you need a new standard?

CC BY-NC 2.5 https://xkcd.com/927/

https://xkcd.com/927/

JOSE—rationale

With the increased usage of JSON in
protocols in the IETF and elsewhere, there is
now a desire to offer security services, which
use encryption, digital signatures, message
authentication codes (MACs) algorithms,
that carry their data in JSON format.1

1https://tools.ietf.org/wg/jose/charters

https://tools.ietf.org/wg/jose/charters

JOSE—rationale

Many current applications thus have
much more robust support for processing
objects in these text-based formats than
ASN.1 objects; indeed, many lack the
ability to process ASN.1 objects at all.
To simplify the addition of object-based
security features to these applications, the
working group has been chartered to develop
a secure object format based on JSON.2

2https://tools.ietf.org/html/rfc7165

https://tools.ietf.org/html/rfc7165

JOSE—assumptions

I ASN.1 libraries don’t exist
I It’s better to define new standard than write a library
I JSON is suitable for security/cryptographic objects
I ASN.1 is bad

JOSE—irony

4.7. "x5c" (X.509 Certificate Chain) Parameter

The "x5c" (X.509 certificate chain) parameter
contains a chain of one or more PKIX certificates
[RFC5280]. The certificate chain is represented
as a JSON array of certificate value strings.
Each string in the array is a base64-encoded
(Section 4 of [RFC4648] -- not base64url-encoded)
DER [ITU.X690.1994] PKIX certificate value.

Takeaway: write libraries, not
standards

Is JSON the right choice?

Falsehoods programmers believe
about JSON. . .

JSON support is universal.

C
Rust
C++
Scala
Haskell
. . .

JSON is human readable.

{" signature ":" M3oVLXrbeFRT9Ef9d3WzR -D7dGtI
eYoPBYmiCdtYqus "," protected ":" eyJhbGciOiJI
UzI1NiIsImtpZCI6ImthcmF0ZSJ9 "," payload ":"e
yJzdWJqZWN0IjoiZnJhc2VAZnJhc2UuaWQuYXUiLCJ
pc3MiOiJocy1qb3NlIiwiYXVkIjpbImFsaWNlIiwiY
m9iIl19Cg "}

JSON is unambiguously specified.

JSON—ambiguities

I invalid code points
I data size limits

JSON objects are maps.

JSON—objects

I names within an object SHOULD be unique—RFC 8259
I Is a JSON object a map?
I What kind of map?
I How should duplicate keys be treated?

JSON will be parsed the same way by
different parsers.

http://seriot.ch/parsing_json.php

http://seriot.ch/parsing_json.php

CVE-2017-12635

{
"type": "user",
"name": "alice",
"roles": ["_admin"],
"roles": []

}

JSON—other problems

I Numbers
I Binary data?
I No canonical serialisation

{"signature":"M3oVLXrbeFRT9Ef9d3WzR-D7dGtI
eYoPBYmiCdtYqus","protected":"eyJhbGciOiJI
UzI1NiIsImtpZCI6ImthcmF0ZSJ9","payload":"e
yJzdWJqZWN0IjoiZnJhc2VAZnJhc2UuaWQuYXUiLCJ
pc3MiOiJocy1qb3NlIiwiYXVkIjpbImFsaWNlIiwiY
m9iIl19Cg"}

{"subject":"frase@frase.id.au",
"iss":"hs-jose",
"aud":["alice","bob"]}

JSON—alternatives

I ASN.1
I CBOR

Takeaway: don’t automatically reach
for JSON

Cryptography in JOSE

JOSE cryptography—issues

I PKCS #1 v1.5 padding
I Weierstrass curves
I "none" signature algorithm
I AES Key Wrap

Algorithmic agility

I more complex protocol
I more ways to mess up
I end up using insecure crypto anyway

JOSE cryptography—common vulnerabilities

I "none" downgrade attack
I invalid curve attack
I algorithm substitution attack

Takeaway: don’t cut corners with
crypto

Ambiguities and Interoperability

{
"payload":"<payload contents>",
"signatures":[
{"protected":"<integrity-protected header 1 contents>",
"header":<non-integrity-protected header 1 contents>,
"signature":"<signature 1 contents>"},

...
{"protected":"<integrity-protected header N contents>",
"header":<non-integrity-protected header N contents>,
"signature":"<signature N contents>"}]

}

{
"payload":"<payload contents>",
"protected":"<integrity-protected header contents>",
"header":<non-integrity-protected header contents>,
"signature":"<signature contents>"

}

http://github.com/frasertweedale/hs-jose/issues/26

http://github.com/frasertweedale/hs-jose/issues/26

JOSE flattened serialisation—drawbacks

I more work for library authors
I incompatible libraries and programs
I more work for downstream standard authors

JOSE flattened serialisation—benefits

I saved a few bytes

Takeaway: use case “optimisations”
belong in libraries, not standards.

hs-jose—dealing with ambiguity

data List a = Nil
| a : (List a)

data Identity a = Identity a

hs-jose—dealing with ambiguity

data JWS t = JWS ByteString (t Signature)

type GeneralJWS = JWS List Protection

type FlattenedJWS = JWS Identity Protection

Dealing with ambiguity—abstraction

I abstract over ambiguities
I let the user decide what they want
I provide simple API for the common use cases

Takeaway: use abstraction to deal
with ambiguities in standards

Writing safe APIs

verifyJWSWithPayload
:: (MonadError Error m

, VerificationKeyStore m payload k
, Foldable t
)

=> ValidationSettings
-> (ByteString -> m payload) -- ^ decoder
-> k -- ^ key store
-> JWS t
-> m payload

Static type systems—benefits

I abstraction
I avoid type confusion attacks
I readability & maintainability
I enable advanced techniques for security3,4,5

3Two Can Keep a Secret, If One of Them Uses Haskell
4FaCT: A Flexible, Constant-Time Programming Language
5HOWTO: Static access control using phantom types

http://www.cse.chalmers.se/~russo/publications_files/pearl-russo.pdf
https://cseweb.ucsd.edu/~dstefan/pubs/cauligi:2017:fact.pdf
https://blog.janestreet.com/howto-static-access-control-using-phantom-types/

Takeaway: static type systems enable safe,
ergonomic APIs

So you’re going to write a new standard. . .

Advice for standards authors

I avoid ambiguity & special cases
I exclude esoteric use cases
I get cryptographers to review
I write multiple implementations

Recap

I write libraries, not standards
I don’t automatically reach for JSON
I don’t cut corners with crypto
I special cases belong in libraries
I abstract over ambiguities
I use statically typed languages
I write multiple implementations

Questions?

Except where otherwise noted this work is licensed under
http://creativecommons.org/licenses/by/4.0/

https://speakerdeck.com/frasertweedale

@hackuador

hackage.haskell.org/package/jose

http://creativecommons.org/licenses/by/4.0/
https://speakerdeck.com/frasertweedale
https://twitter.com/hackuador
https://hackage.haskell.org/package/jose

	Do you need a new standard?
	Is JSON the right choice?
	Cryptography in JOSE
	Ambiguities and Interoperability
	Writing safe APIs
	So you're going to write a new standard…

