No way, JOSE!

Lessons for authors and implementers of open standards

Fraser Tweedale
@hackuador

July 3, 2018

A journey. ..

JOSE

» JSON Object Signing and Encryption
» IETF WG formed 2011, RFCs 2015
» used in OpenID Connect, ACME

JOSE & me

» | wrote a JOSE library for Haskell
» | participated in IETF discussions
» JOSE has lots of problems (sorry...)

What is a standard?

Do you need a new standard?

HOW STANDARDS PROLIFERATE:
(<65 AIC CHARGERS, (HARACTER ENCODINGS, INSTANT MESSAGING, £TC)

SITUATION:
THERE. ARE
4 COMPETING
STANDPRDS.

1?7 RiDIcUous!

WE NEED To DEVELORP
ONE UNIVERSAL STANDARD
THAT COVERS EVERYONE'S
USE CASES. YERH!

\ O J

)

SITUATION:
THERE. ARE
|5 COMPETING
STANDERDS.

CC BY-NC 2.5 https://xkcd.com/927/

https://xkcd.com/927/

JOSE—rationale

With the increased usage of JSON in
protocols in the IETF and elsewhere, there is
now a desire to offer security services, which
use encryption, digital signatures, message
authentication codes (MACs) algorithms,
that carry their data in JSON format.

"https://tools.ietf.org/wg/jose/charters

https://tools.ietf.org/wg/jose/charters

JOSE—rationale

Many current applications thus have
much more robust support for processing
objects in these text-based formats than
ASN.1 objects; indeed, many lack the
ability to process ASN.1 objects at all.

To simplify the addition of object-based
security features to these applications, the
working group has been chartered to develop
a secure object format based on JSON.”

“https://tools.ietf.org/html/rfc7165

https://tools.ietf.org/html/rfc7165

JOSE—assumptions

ASN.1 libraries don't exist
It's better to define new standard than write a library

JSON is suitable for security/cryptographic objects
ASN.1 is bad

vVvyYyywy

JOSE—irony

4.7. "x5c" (X.509 Certificate Chain) Parameter

The "x5c" (X.509 certificate chain) parameter
contains a chain of one or more PKIX certificates
[RFC5280]. The certificate chain is represented
as a JSON array of certificate value strings.
Each string in the array is a base64-encoded
(Section 4 of [RFC4648] -- not base64url-encoded)
DER [ITU.X690.1994] PKIX certificate value.

Takeaway: write libraries, not
standards

Is JSON the right choice?

Falsehoods programmers believe

about JSON. ..

JSON support is universal.

C
Rust
C++

Scala
Haskell

JSON is human readable.

{"signature":"M30oVLXrbeFRTOEf9d3WzR -D7dGtI
eYoPBYmiCdtYqus" ,"protected":"eyJhbGciO0iJI
UzIINiIsImtpZCI6ImthcmFOZSJO" ,"payload":"e
yJzdWJIQZWNOIjoiZnJhc2VAZnJhc2UuaWQuYXUiLCJ
pc3MiOiJocylgb3N1lIiwiYXVkIjpbImFsaWN1IiwiY
m9iI119Cg"}

JSON is unambiguously specified.

JSON—ambiguities

» invalid code points
» data size limits

JSON objects are maps.

JSON—objects

names within an object SHOULD be unique—RFC 8259
Is a JSON object a map?

What kind of map?

How should duplicate keys be treated?

vV vyYyywy

JSON will be parsed the same way by
different parsers.

JSON Parsing Tests, Pruned

v e s g IO Ml o e i 0

http://seriot.ch/parsing_json.php

http://seriot.ch/parsing_json.php

CVE-2017-12635

"type": "user",
"name": "alice",
"roles": ["_admin"],
"roles": []

JSON—other problems

» Numbers
» Binary data?
» No canonical serialisation

{"signature":"M30oVLXrbeFRTIEf9d3WzR-D7dGtI
eYoPBYmiCdtYqus","protected":"eyJhbGciOiJI
UzI1NiIsImtpZCI6ImthcmFO0ZSJ9", "payload":"e
yJzdWJQZWNOI joiZnJhc2VAZnJhc2UuaWQuYXUiLCJ
pc3MiOiJocylqb3N1IiwiYXVKI jpbImFsaWN1IiwiY
m9iI119Cg"}

{"subject":"frase@frase.id.au",
"iss":"hs-jose",
"aud“ : ["alice" s "bOb"] }

YO DAWG, | HEARD YOU LIKE JSON

L

=7
|

SO1PUTAJSON IN YOUR JSON

JSON—alternatives

» ASN.1
» CBOR

Takeaway: don't automatically reach

for JSON

Cryptography in JOSE

JOSE cryptography—issues

PKCS #1 v1.5 padding
Weierstrass curves

"none" signature algorithm
AES Key Wrap

vV vyYyywy

Algorithmic agility

» more complex protocol
> more ways to mess up
» end up using insecure crypto anyway

JOSE cryptography—common vulnerabilities

» "none" downgrade attack
> invalid curve attack
» algorithm substitution attack

Takeaway: don't cut corners with
crypto

Ambiguities and Interoperability

"payload":"<payload contents>",

"signatures": [

{"protected":"<integrity-protected header
"header":<non-integrity-protected header
"signature":"<signature 1 contents>"},

{"protected":"<integrity-protected header
"header":<non-integrity-protected header
"signature":"<signature N contents>"}]

1
1

N
N

contents>",
contents>,

contents>",
contents>,

"payload":"<payload contents>",
"protected":"<integrity-protected header contents>",
"header" :<non-integrity-protected header contents>,
"signature":"<signature contents>"

El frasertweedale / hs-jose @ Unwatch~ 6 & Star | 61 Fork 15

Code @ lIssues 9 Pull requests 0 Projects 0 ‘Wiki Insights Settings

Serialize one "aud" (Audience) Claim to JSON as string)] v |
#26

beardpotatocat opened this issue on Nov 21, 2016 - 1 comment

beardpotatocat commented on Nov 21, 2016 +@ & O Assignees

No one—assign yourself
In https://tools.ietf.org/html/rfc7519#section-4.1.3 - In the
special case when the JWT has one audience, the "aud" value MAY be a Labels

single case-sensitive string containing a StringOrURI value.
None yet

In current implementation is a single value array. for example "aud": ["https://www.googleapis.com/cauth2
Iv4/token"] but that doesn't work for hitps://developers.google.com/identity/protocols Projects
JOAuth2ServiceAccount where they expect "aud":"https://www.googleapis.com/oauth2/v4/token"

Nane yet
‘Would it be possible to support singe string in
instance ToJSON Audience where Milestone
t0JSON (Audience auds) = toJSON auds No milestone
?

http://github.com/frasertweedale/hs- jose/issues/26

http://github.com/frasertweedale/hs-jose/issues/26

JOSE flattened serialisation—drawbacks

» more work for library authors
» incompatible libraries and programs
» more work for downstream standard authors

JOSE flattened serialisation—benefits

> saved a few bytes

Takeaway: use case “optimisations”
belong in libraries, not standards.

hs-jose—dealing with ambiguity

data List a = Nil
| a : (List a)

data Identity a = Identity a

hs-jose—dealing with ambiguity

data JWS t = JWS ByteString (t Signature)
type GeneralJWS = JWS List Protection

type FlattenedJWS = JWS Identity Protection

Dealing with ambiguity—abstraction

» abstract over ambiguities
> let the user decide what they want
» provide simple API for the common use cases

Takeaway: use abstraction to deal
with ambiguities in standards

Writing safe APlIs

verifyJWSWithPayload
(MonadError Error m
VerificationKeyStore m payload k

b

, Foldable t

)
=> ValidationSettings
-> (ByteString -> m payload) -- ~ decoder
-> k -- 7 key store
-> JWS t

-> m payload

Static type systems—benefits

abstraction

avoid type confusion attacks

readability & maintainability

enable advanced techniques for security®*:°

vVVvyYyYyywy

3Two Can Keep a Secret, If One of Them Uses Haskell
#FaCT: A Flexible, Constant-Time Programming Language
SHOWTO: Static access control using phantom types

http://www.cse.chalmers.se/~russo/publications_files/pearl-russo.pdf
https://cseweb.ucsd.edu/~dstefan/pubs/cauligi:2017:fact.pdf
https://blog.janestreet.com/howto-static-access-control-using-phantom-types/

Takeaway: static type systems enable safe,
ergonomic APls

So you're going to write a new standard. ..

Advice for standards authors

avoid ambiguity & special cases
exclude esoteric use cases

get cryptographers to review
write multiple implementations

vV vyYyywy

Recap

vV VvV VvV VvV VvV VY

write libraries, not standards

don't automatically reach for JSON
don’t cut corners with crypto
special cases belong in libraries
abstract over ambiguities

use statically typed languages

write multiple implementations

Questions?

(©MOM

Except where otherwise noted this work is licensed under

http://creativecommons.org/licenses/by/4.0/

https://speakerdeck.com/frasertweedale
@hackuador

hackage.haskell.org/package/jose

http://creativecommons.org/licenses/by/4.0/
https://speakerdeck.com/frasertweedale
https://twitter.com/hackuador
https://hackage.haskell.org/package/jose

	Do you need a new standard?
	Is JSON the right choice?
	Cryptography in JOSE
	Ambiguities and Interoperability
	Writing safe APIs
	So you're going to write a new standard…

