
7/4/2018 localhost:8000/slides-light.html?print-pdf

http://localhost:8000/slides-light.html?print-pdf 1/44

SECURITY, PERFORMANCE: PICK ONE ?SECURITY, PERFORMANCE: PICK ONE ?
Pierre Chifflier

@pollux7

1

https://twitter.com/pollux7

7/4/2018 localhost:8000/slides-light.html?print-pdf

http://localhost:8000/slides-light.html?print-pdf 2/44

WHATWHAT
Defensive/Secure programming
Needed for many programs

Web servers, IDS

O�en rejected for perf reasons

We want performance and security

And something we can maintain over time

2

7/4/2018 localhost:8000/slides-light.html?print-pdf

http://localhost:8000/slides-light.html?print-pdf 3/44

WHOWHO
Debian Developer, Suricata contributor
Head of the Detection Research lab at ANSSI
Security, compilers and languages
Write (rust) parsers for everything

3

7/4/2018 localhost:8000/slides-light.html?print-pdf

http://localhost:8000/slides-light.html?print-pdf 4/44

DISCLAIMERDISCLAIMER
This talk is my story, not a guide

Could be “story of a fight vs the compiler”
Still, there are general rules/hints

4

7/4/2018 localhost:8000/slides-light.html?print-pdf

http://localhost:8000/slides-light.html?print-pdf 5/44

CHOOSING A LANGUAGECHOOSING A LANGUAGE
Sometimes C is not the answer

You will always fail somewhere
Believe me, I’ve tried

Parts in assembly
Could be fast, but a nightmare to maintain

OCaml, Go, …
The perf-killer garbage collector

5

7/4/2018 localhost:8000/slides-light.html?print-pdf

http://localhost:8000/slides-light.html?print-pdf 6/44

EXAMPLE: PARSING KERBEROSEXAMPLE: PARSING KERBEROS
KDC-REQ-BODY ::= SEQUENCE {

 kdc-options [0] KDCOptions,

 cname [1] PrincipalName OPTIONAL

 -- Used only in AS-REQ --,

 realm [2] Realm

 -- Server's realm

 -- Also client's in AS-REQ --,

 sname [3] PrincipalName OPTIONAL,

 from [4] KerberosTime OPTIONAL,

 till [5] KerberosTime,

 rtime [6] KerberosTime OPTIONAL,

 nonce [7] UInt32,

 etype [8] SEQUENCE OF Int32 -- EncryptionType

 -- in preference order --,

 addresses [9] HostAddresses OPTIONAL,

 enc-authorization-data [10] EncryptedData OPTIONAL

 -- AuthorizationData --,

 additional-tickets [11] SEQUENCE OF Ticket OPTIONAL

 -- NOTE: not empty

6

7/4/2018 localhost:8000/slides-light.html?print-pdf

http://localhost:8000/slides-light.html?print-pdf 7/44

ASN.1 DER ENCODINGASN.1 DER ENCODING
The 9 layers of DER Hell

Lots of TLVs
Highly recursive
Infinite size integers
Variable lengths

Ex: ASN.1 DigestInfo

30 31 30 0d 06 09 60 86 48 01 65 03 04 02 01 05 00 04 20 XXXXXXXXXXXXXXXXXXXX

Tag Length

30 (SEQUENCE) 31

 Tag Length

 30 (SEQUENCE) 0d

 Tag Length

 06 (OID) 09

 OID

 60 86 48 01 65 03 04 02 01

 Tag Length

 05 (NULL) 00

 Tag Length

 04 (OCTET STRING) 20

 octet string (SHA - 256 hash)

 XXXXXXXXXXXXXXXXXXXX

7

7/4/2018 localhost:8000/slides-light.html?print-pdf

http://localhost:8000/slides-light.html?print-pdf 8/44

WRITING PARSERS IS HARDWRITING PARSERS IS HARD

(source: Google OSS-Fuzz)

8

7/4/2018 localhost:8000/slides-light.html?print-pdf

http://localhost:8000/slides-light.html?print-pdf 9/44

RUSTRUST
Compatible with C
Type safety
Memory safety: non uninitialized values,
etc.
Thread safety: forces you to protect (lock)
concurrent access
Note: integer overflow/underflow still
possible

9

7/4/2018 localhost:8000/slides-light.html?print-pdf

http://localhost:8000/slides-light.html?print-pdf 10/44

RUST SPEEDRUST SPEED
Fast, but not enough
Can we do better

Keeping safety
Keeping some readability

10

7/4/2018 localhost:8000/slides-light.html?print-pdf

http://localhost:8000/slides-light.html?print-pdf 11/44

MANDATORY WARNINGMANDATORY WARNING
First rule: don’t optimize
Don’t bother one-time
optimizations

11

7/4/2018 localhost:8000/slides-light.html?print-pdf

http://localhost:8000/slides-light.html?print-pdf 12/44

METHODOLOGYMETHODOLOGY
First: identifying slow points
Use available tools
cargo bench

perf, valgrind
flamegraph

One eye on the source code
Also look at the produced binary code

12

7/4/2018 localhost:8000/slides-light.html?print-pdf

http://localhost:8000/slides-light.html?print-pdf 13/44

ACTION 1: SOURCE CODEACTION 1: SOURCE CODE
Algorithms first
Zero-copy

Made possible thanks to slices
Non-locking code

Borrow-checker and non-mutability help a lot

13

7/4/2018 localhost:8000/slides-light.html?print-pdf

http://localhost:8000/slides-light.html?print-pdf 14/44

SLICESSLICES

14

7/4/2018 localhost:8000/slides-light.html?print-pdf

http://localhost:8000/slides-light.html?print-pdf 15/44

RESULT 1RESULT 1
messages of 305 bytes
1856 ns / message -> 156 MB/s (per thread)
Fast, but we want more

15

7/4/2018 localhost:8000/slides-light.html?print-pdf

http://localhost:8000/slides-light.html?print-pdf 16/44

ADDING INSTRUMENTATION: STEP 1ADDING INSTRUMENTATION: STEP 1
Add to Cargo.toml:

[profile.release]

debug = true

[profile.bench]

debug = true

16

7/4/2018 localhost:8000/slides-light.html?print-pdf

http://localhost:8000/slides-light.html?print-pdf 17/44

STEP 2: ADD BENCHMARKSSTEP 2: ADD BENCHMARKS
Add a benchmark (benches/b_krb5_parser.rs):

static KRB5_TICKET: &'static [u8] = include_bytes!("../assets/krb5-ticket.bin");

#[bench]

fn bench_parse_ticket(b: &mut Bencher) {

 b.iter(|| {

 let res = parse_krb5_ticket(KRB5_TICKET);

 // use result !

 match res {

 Ok((rem,tkt)) => {

 assert!(rem.is_empty());

 assert_eq!(tkt.tkt_vno, 5);

 },

 _ => assert!(false),

 }

 });

}

17

7/4/2018 localhost:8000/slides-light.html?print-pdf

http://localhost:8000/slides-light.html?print-pdf 18/44

STEP 3: COLLECT INSTRUMENTATIONSTEP 3: COLLECT INSTRUMENTATION
RESULTSRESULTS

Build the benchmark executable

Use valgrind on it:

cargo bench --no-run

valgrind --tool=callgrind \

 --dump-instr=yes --collect-jumps=yes --simulate-cache=yes \

 ./target/release/b_krb5_parser-e84a853b88e37bef --bench bench_parse_ticket

18

7/4/2018 localhost:8000/slides-light.html?print-pdf

http://localhost:8000/slides-light.html?print-pdf 19/44

PERFORMANCE GRAPHSPERFORMANCE GRAPHS

19

7/4/2018 localhost:8000/slides-light.html?print-pdf

http://localhost:8000/slides-light.html?print-pdf 20/44

WHY IS IT SLOW ?WHY IS IT SLOW ?
Parts of the code are slow

too many tests
useless data copy

Some structures do not fit in cache

20

7/4/2018 localhost:8000/slides-light.html?print-pdf

http://localhost:8000/slides-light.html?print-pdf 21/44

ACTION 2: LOOK AT PRODUCED CODEACTION 2: LOOK AT PRODUCED CODE
Goal: try to identify and use efficient patterns
Can bring huge speed improvements
Time consuming
Hard to find stable optimization patterns

21

7/4/2018 localhost:8000/slides-light.html?print-pdf

http://localhost:8000/slides-light.html?print-pdf 22/44

COMPILER IS YOUR FRIEND .. OR NOTCOMPILER IS YOUR FRIEND .. OR NOT

22

7/4/2018 localhost:8000/slides-light.html?print-pdf

http://localhost:8000/slides-light.html?print-pdf 23/44

EXAMPLE: READING AN U64EXAMPLE: READING AN U64
let u = (i[0] as u64) << 7 |

 (i[1] as u64) << 6 |

 (i[2] as u64) << 5 |

 (i[3] as u64) << 4 |

 (i[4] as u64) << 3 |

 (i[5] as u64) << 2 |

 (i[6] as u64) << 1 |

 (i[7] as u64);

23

7/4/2018 localhost:8000/slides-light.html?print-pdf

http://localhost:8000/slides-light.html?print-pdf 24/44

EXAMPLE: READING AN U64EXAMPLE: READING AN U64

8 length tests

24

7/4/2018 localhost:8000/slides-light.html?print-pdf

http://localhost:8000/slides-light.html?print-pdf 25/44

TEST #1: REORDERINGTEST #1: REORDERING

Read last bytes first

let u =

 (i[7] as u64) |

 (i[6] as u64) << 1 |

 (i[5] as u64) << 2 |

 (i[4] as u64) << 3 |

 (i[3] as u64) << 4 |

 (i[2] as u64) << 5 |

 (i[1] as u64) << 6 |

 (i[0] as u64) << 7;

25

7/4/2018 localhost:8000/slides-light.html?print-pdf

http://localhost:8000/slides-light.html?print-pdf 26/44

TEST #1: REORDERINGTEST #1: REORDERING

Better, but we still have a panic statement

26

7/4/2018 localhost:8000/slides-light.html?print-pdf

http://localhost:8000/slides-light.html?print-pdf 27/44

TEST #2: ASSERTING/TESTING SIZETEST #2: ASSERTING/TESTING SIZE

Compiler uses the info from the test
No need to reorder

if i.len() < 8 { return 0; }

let u = (i[0] as u64) << 7 |

 (i[1] as u64) << 6 |

 (i[2] as u64) << 5 |

 (i[3] as u64) << 4 |

 (i[4] as u64) << 3 |

 (i[5] as u64) << 2 |

 (i[6] as u64) << 1 |

 (i[7] as u64);

27

7/4/2018 localhost:8000/slides-light.html?print-pdf

http://localhost:8000/slides-light.html?print-pdf 28/44

TEST #2: ASSERTING/TESTING SIZETEST #2: ASSERTING/TESTING SIZE

28

7/4/2018 localhost:8000/slides-light.html?print-pdf

http://localhost:8000/slides-light.html?print-pdf 29/44

LESSONS FROM THAT EXAMPLELESSONS FROM THAT EXAMPLE
Compiler is smart
But not enough to infer all information
Sometimes adding code makes result faster

Some tests/asserts have to be explicit
We can get efficient code without using unsafe or assembly

29

7/4/2018 localhost:8000/slides-light.html?print-pdf

http://localhost:8000/slides-light.html?print-pdf 30/44

SOME OTHER TIPSSOME OTHER TIPS

30

7/4/2018 localhost:8000/slides-light.html?print-pdf

http://localhost:8000/slides-light.html?print-pdf 31/44

PACKED ENUMSPACKED ENUMS
Representing a packed enum:

However:

match is slow
conversions to/from u8 are implemented as either

function calls (slow)
memory casts (unsafe)

#[repr(u8)]

pub enum Foo {

 Value1 = 1,

 Value2 = 2,

 ...

31

7/4/2018 localhost:8000/slides-light.html?print-pdf

http://localhost:8000/slides-light.html?print-pdf 32/44

THE NEWTYPE PATTERNTHE NEWTYPE PATTERN

Type-safe, cost-free abstraction
Free conversions

except if you forget the pub keyword!
Compile time increases
Values have to be declared as associated constants

pub struct Foo(pub u8);

impl Foo {

 pub const Value1 : Foo = Foo(1);

32

7/4/2018 localhost:8000/slides-light.html?print-pdf

http://localhost:8000/slides-light.html?print-pdf 33/44

ALLOCATIONSALLOCATIONS
Allocations are slow
Prefer the stack

Avoid Box and Vec
You can use variable-length data-types on stack
Drawback: calls to memcpy

33

7/4/2018 localhost:8000/slides-light.html?print-pdf

http://localhost:8000/slides-light.html?print-pdf 34/44

STRUCTURESSTRUCTURES
Keep as much as possible in cache

Use small structs
Make sure they fit in cache

Check using valgrind

34

7/4/2018 localhost:8000/slides-light.html?print-pdf

http://localhost:8000/slides-light.html?print-pdf 35/44

CODECODE
Keep as much as possible in cache
Keep as much as possible in registers
Use reentrant, pure functions (no side-effects)
Avoid locks and global structures

locks are slow!

35

7/4/2018 localhost:8000/slides-light.html?print-pdf

http://localhost:8000/slides-light.html?print-pdf 36/44

CODECODE
Write linear code

Avoid instructions cache misses
nom helps a lot (macros)

Possible problem: cyclomatic complexity
warning: the function has a cyclomatic complexity of 231

 --> src/krb5_parser.rs:303:1

36

7/4/2018 localhost:8000/slides-light.html?print-pdf

http://localhost:8000/slides-light.html?print-pdf 37/44

AUTOMATIC VECTORIZATIONAUTOMATIC VECTORIZATION

Code is not vectorized:

let len = min(min(a.len(), b.len()), c.len());

for i in 0..len {

 c[i] = a[i] + b[i];

}

cmp rsi, r10

jae .LBB0_7

cmp rsi, rcx

jae .LBB0_8

cmp rsi, r9

jae .LBB0_9

mov eax, dword ptr [rdi + 4*rsi]

add eax, dword ptr [rdx + 4*rsi]

mov dword ptr [r8 + 4*rsi], eax

lea rax, [rsi + 1]

mov rsi, rax

...

37

7/4/2018 localhost:8000/slides-light.html?print-pdf

http://localhost:8000/slides-light.html?print-pdf 38/44

AUTOMATIC VECTORIZATIONAUTOMATIC VECTORIZATION

Code is vectorized:

However:

Make sure instructions apply to blocks of data

let len = min(min(a.len(), b.len()), c.len());

let (a,b,c) = (&a[..len], &b[..len], &mut c[..len]);

for i in 0..len {

 c[i] = a[i] + b[i];

}

movdqu xmm0, xmmword ptr [r10 + 4*rsi]

movdqu xmm1, xmmword ptr [r10 + 4*rsi + 16]

movdqu xmm2, xmmword ptr [rdx + 4*rsi]

paddd xmm2, xmm0

movdqu xmm0, xmmword ptr [rdx + 4*rsi + 16]

paddd xmm0, xmm1

...

38

7/4/2018 localhost:8000/slides-light.html?print-pdf

http://localhost:8000/slides-light.html?print-pdf 39/44

MISC PATTERNSMISC PATTERNS
Avoid Box<Trait>, prefer &mut Trait

former is 2 pointers (and extra checks)
Use iterators

they can spare some more bounds checks

39

7/4/2018 localhost:8000/slides-light.html?print-pdf

http://localhost:8000/slides-light.html?print-pdf 40/44

LINKERLINKER
Use LTO (Link-time optimization)

Bigger executable, generally faster
Better than using #[inline(always)]

Test PGO (Profile-guided optimization)
Variable results
Sometimes really good

40

7/4/2018 localhost:8000/slides-light.html?print-pdf

http://localhost:8000/slides-light.html?print-pdf 41/44

CHECKING WE STILL HAVE SECURITYCHECKING WE STILL HAVE SECURITY
Compiler is not (always) your friend

Undefined behaviors
Integer underflows/overflows
Removed in release mode, but can be added

Removed tests
Removed calls (e.g. memset)
panic / assert inserted or remaining

Use Compiler Explorer ()
Use cargo fuzz

https://rust.godbolt.org/

41

https://rust.godbolt.org/

7/4/2018 localhost:8000/slides-light.html?print-pdf

http://localhost:8000/slides-light.html?print-pdf 42/44

RESULTS (KERBEROS)RESULTS (KERBEROS)

Comparison: my C implem. is ~ 500 MB/s
42

7/4/2018 localhost:8000/slides-light.html?print-pdf

http://localhost:8000/slides-light.html?print-pdf 43/44

CODECODE
Kerberos, SNMP, IKEv2, TLS, Radius, etc.
Rusticata project (and all parsers):
Rust code push on
Most parsers merged in Suricata git repo (4.1 ?)

https://github.com/rusticata
crates.io

43

https://github.com/rusticata
https://crates.io/

7/4/2018 localhost:8000/slides-light.html?print-pdf

http://localhost:8000/slides-light.html?print-pdf 44/44

LESSONSLESSONS
Guiding the compiler is efficient

And easier to maintain than writing
assembly

Always check that the tests are present
a�er optimizing

Are the optimizations stable ?
Not guaranteed, but in practise yes
Sometimes look like voodoo

44

