
7/1/2019 Reversing a Firmware uploader & others NFC stories

file:///D:/projects/pts2019/dist/index.html 1/41

Reversing a firmware
uploader

&

Others NFC stories

1

7/1/2019 Reversing a Firmware uploader & others NFC stories

file:///D:/projects/pts2019/dist/index.html 2/41

About me

My name's Slurdge/Aurélien

I'm an enthusiast about NFC, not an expert!
My main work involves games

I know a bit of reverse engineering

Let's see how to combine them

I like to have open source solutions to handle my hardware.
Especially embedded hardware where the proprietary tools are
mainly Windows based with cumbersome licenses.

Pass The Salt 2019 2

7/1/2019 Reversing a Firmware uploader & others NFC stories

file:///D:/projects/pts2019/dist/index.html 3/41

Plan

1. A short story

2. Reversing the Chameleon-Mini clone uploader

3. The strange case of the half working NFC tag

Pass The Salt 2019 3

7/1/2019 Reversing a Firmware uploader & others NFC stories

file:///D:/projects/pts2019/dist/index.html 4/41

A short story

I once put my hand on a LF tag of a friend. Excited, I tried to clone
with my brand new proxmark.
I was a bit too ambitious and erased the tag (it accepted any write
command). Now, there was a backup tag in his car, which was in
this garage.

The garage could be opened only by a valid tag.

And it was a Sunday night.

Lesson learned: be very careful with other's people tags! Or you
will camp outside a garage waiting for someone to come in

Pass The Salt 2019 4

7/1/2019 Reversing a Firmware uploader & others NFC stories

file:///D:/projects/pts2019/dist/index.html 5/41

Chameleon-Mini

It was created by David Oswald and Timo Kasper.

The original ChameleonMini is now at revision G. ChameleonMini is
open, you can find the whole hardware and firmware files at
https://github.com/emsec/ChameleonMini.

The ChameleonMini is a versatile contactless smartcard
emulator compliant to NFC. To support our project, buy it here:
https://shop.kasper.it.

“

“

Pass The Salt 2019 5

https://github.com/emsec/ChameleonMini
https://shop.kasper.it/

7/1/2019 Reversing a Firmware uploader & others NFC stories

file:///D:/projects/pts2019/dist/index.html 6/41

Chameleon Mini: RevE Rebooted

Project was done by ProxGrind (hardware) and dxls (firmware) for
Lab401

It was later open sourced

You can find it pretty easily on certain Chinese websites.

European Exclusive to Lab401, the Chameleon Mini: RevE
Rebooted is a highly optimized fork of the original project.

“

“

Pass The Salt 2019 6

7/1/2019 Reversing a Firmware uploader & others NFC stories

file:///D:/projects/pts2019/dist/index.html 7/41

How to upload the Firmware

If you browse the product page on AliExpress, this message is written
in big green letters:

Big News: we decide to make the reboot open source, so, after
you place order, will give you the link.

“
“

Pass The Salt 2019 7

7/1/2019 Reversing a Firmware uploader & others NFC stories

file:///D:/projects/pts2019/dist/index.html 8/41

How to upload the
Firmware

Good. Let's ask them then

Oh, it was iceman's
repository all along...

Let's download this Google
Drive package anyway.

iceman of proxmark fame

Pass The Salt 2019 8

7/1/2019 Reversing a Firmware uploader & others NFC stories

file:///D:/projects/pts2019/dist/index.html 9/41

Goal

We want to:

Build a firmware

Upload a firmware

Get rid of those pesky executable files

Work from Windows, Linux, MacOS

Should be an interesting challenge!

Pass The Salt 2019 9

7/1/2019 Reversing a Firmware uploader & others NFC stories

file:///D:/projects/pts2019/dist/index.html 10/41

What we have so far

Two executables

BOOT_LOADER_EXE.exe
Createbin.exe

Yeah, can't get much more generic than that... Except maybe
BOOT_LOADER_EXE_DOT_EXE

It's pretty obvious that Createbin.exe is responsible to create the file
used by BOOT_LOADER_EXE.exe , since it's written in the github wiki.

Pass The Salt 2019 10

7/1/2019 Reversing a Firmware uploader & others NFC stories

file:///D:/projects/pts2019/dist/index.html 11/41

What we have so far

There are also issues on
https://github.com/iceman1001/ChameleonMini-rebooted/ that are
talking about some AES encryption, file manipulation and so on...

So it may simply be a case of finding the AES key! Should be pretty
easy to find in the executable... However that would mean there is an
AES engine in the bootloader?

Strange (as the chip is not that powerful)... Let's investigate it later!

Pass The Salt 2019 11

https://github.com/iceman1001/ChameleonMini-rebooted/

7/1/2019 Reversing a Firmware uploader & others NFC stories

file:///D:/projects/pts2019/dist/index.html 12/41

Running BOOT_LOADER_EXE.exe

If we use the BOOT_LOADER_EXE.exe file on Windows, after putting the
Chameleon-Mini rebooted in DFU mode, we get this:

old_driver_bootloader
Erasing flash... Success
Checking memory from 0x0 to 0x6FFF... Empty.
0% 100% Programming 0x20 bytes...
[>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>] Success
0% 100% Reading 0x400 bytes...
0% 100% Programming 0x5B00 bytes...
[>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>] Success
0% 100% Reading 0x7000 bytes...
load_success!

Pass The Salt 2019 12

7/1/2019 Reversing a Firmware uploader & others NFC stories

file:///D:/projects/pts2019/dist/index.html 13/41

Reversing: Createbin.exe

Our first step is to duplicate the Createbin.exe so we can create
binary files that would be accepted by the uploader part. Let's fire...
Ghidra !

It's simply a matter of opening the exe in Ghidra and it decompiles
itself nicely. It's very easy to follow the flow and find the main
function. Only slight editing has been done.

PTS2019 note: I did again the reverse engineering with Ghidra to
show how to do it with open source tools.

Pass The Salt 2019 13

7/1/2019 Reversing a Firmware uploader & others NFC stories

file:///D:/projects/pts2019/dist/index.html 14/4114

7/1/2019 Reversing a Firmware uploader & others NFC stories

file:///D:/projects/pts2019/dist/index.html 15/41

void __cdecl main(int argc,char **argv)
{
 _File = fopen(argv[1],"rb");
 if (_File == (FILE *)0x0) {
 printf("Not find file");
 }
 else {
 fseek(_File,0,2);
 uVar2 = ftell(_File);
 _DstBuf = malloc(-(uint)(0xffffffef < (uint)uVar2) | (uint)uVar2 + 0x10); //rounding
 _Str = malloc(((uint)uVar2 + 0x10) * 5);
 if (_DstBuf == (void *)0x0) {
 fclose(_File);
 printf("Not get space");
 }
 else { /*Doing some interesting stuff!*/ }
 //Writing file routines...
 printf("Write done!");
 }
 }
}

Pass The Salt 2019 15

7/1/2019 Reversing a Firmware uploader & others NFC stories

file:///D:/projects/pts2019/dist/index.html 16/41

 fread(_DstBuf,(uint)uVar2,1,_File);
 local_40 = uVar2;
 if ((uVar2 & 0xf) != 0) { //padding
 while (local_40 < uVar2 + (0x10 - ((uint)uVar2 & 0x8000000f))) {
 *(undefined *)((int)_DstBuf + (uint)local_40) = 0;
 local_40 = local_40 + 1;
 }
 }
 uVar2 = uVar2 + (0x10 - (uVar2 & 0xf));
 iVar3 = thunk_FUN_00414870((uint *)&DAT_00420138,(byte *)"designed by dxls",0x80);
 counter._0_2_ = 0;
 while ((uint)(ushort)counter < (uint)((int)(uint)uVar2 >> 4)) {
 thunk_FUN_00415800(counter * 0x10 + _DstBuf),
 counter * 0x10 + '-',0x10);
 aes_operation((uint *)&DAT_00420138,iVar3,
 (byte *)((uint)(ushort)counter * 0x10 + (int)_DstBuf),
 (undefined *)((uint)(ushort)counter * 0x10 + (int)_DstBuf));
 counter._0_2_ = (ushort)counter + 1;
 }

Pass The Salt 2019 16

7/1/2019 Reversing a Firmware uploader & others NFC stories

file:///D:/projects/pts2019/dist/index.html 17/41

Reversing: Createbin.exe

Did we... did we just find the AES key?

>>> len("designed by dxls")
16

It was that easy! Just need to find the algorithm used. At that point,
happy, I wrote a python script that would try all modes of AES and
compare the output.

Pass The Salt 2019 17

7/1/2019 Reversing a Firmware uploader & others NFC stories

file:///D:/projects/pts2019/dist/index.html 18/41

Reversing: Createbin.exe

Nothing matches...

Back to the drawing board. We didn't investigate what this function
does:

thunk_FUN_00415800(counter * 0x10 + _DstBuf),
 counter * 0x10 + '-',0x10);

Pass The Salt 2019 18

7/1/2019 Reversing a Firmware uploader & others NFC stories

file:///D:/projects/pts2019/dist/index.html 19/41

Reversing: Createbin.exe

void __cdecl FUN_00415800(char *param_1,char xor_byte,int size)
{
 counter = 0;
 while (counter < size) {
 tmp = (xor_byte + counter) ^ param_1[counter];
 param_1[counter] = tmp;
 counter = counter + 1;
 }
 return;
}

So... they single byte xor with a rolling counter... Let's integrate it!

Pass The Salt 2019 19

7/1/2019 Reversing a Firmware uploader & others NFC stories

file:///D:/projects/pts2019/dist/index.html 20/41

Reversing: Createbin.exe

Nothing matches again ...

I went from happy to sad in a few hours.

We'll have to keep digging deeper. Let's look at thunk_FUN_00414870

Pass The Salt 2019 20

7/1/2019 Reversing a Firmware uploader & others NFC stories

file:///D:/projects/pts2019/dist/index.html 21/41

void FUN_00414870(uint *param_1,byte *param_2,int param_3)
{
 local_18 = thunk_FUN_00414da0(param_1,param_2,param_3);
 local_24 = 0;
 local_30 = local_18 << 2;
 while (local_24 < local_30) {
 uVar1 = param_1[local_24];
 param_1[local_24] = param_1[local_30];
 param_1[local_30] = uVar1;
 uVar1 = param_1[local_24 + 1];
 param_1[local_24 + 1] = param_1[local_30 + 1];
 param_1[local_30 + 1] = uVar1;
 uVar1 = param_1[local_24 + 2];
 param_1[local_24 + 2] = param_1[local_30 + 2];
 param_1[local_30 + 2] = uVar1;
 local_3c = param_1[local_24 + 3];
 param_1[local_24 + 3] = param_1[local_30 + 3];
 param_1[local_30 + 3] = local_3c;
 local_24 = local_24 + 4;
 local_30 = local_30 + -4;
 }

Pass The Salt 2019 21

7/1/2019 Reversing a Firmware uploader & others NFC stories

file:///D:/projects/pts2019/dist/index.html 22/41

int AES_set_encrypt_key(const unsigned char *userKey, const int bits,
 AES_KEY *key)
{
 u32 *rk;
 int i = 0;
 u32 temp;
 if (!userKey || !key)
 return -1;
 if (bits != 128 && bits != 192 && bits != 256)
 return -2;
 rk = key->rd_key;
 if (bits==128)
 key->rounds = 10;
 else if (bits==192)
 key->rounds = 12;
 else
 key->rounds = 14;

Pass The Salt 2019 22

7/1/2019 Reversing a Firmware uploader & others NFC stories

file:///D:/projects/pts2019/dist/index.html 23/41

int AES_set_decrypt_key(const unsigned char *userKey, const int bits,
 AES_KEY *key)
{

 u32 *rk;
 int i, j, status;
 u32 temp;

 /* first, start with an encryption schedule */
 status = AES_set_encrypt_key(userKey, bits, key);
 if (status < 0)
 return status;

 rk = key->rd_key;

 /* invert the order of the round keys: */
 for (i = 0, j = 4*(key->rounds); i < j; i += 4, j -= 4) {
 temp = rk[i]; rk[i] = rk[j]; rk[j] = temp;
 temp = rk[i + 1]; rk[i + 1] = rk[j + 1]; rk[j + 1] = temp;
 temp = rk[i + 2]; rk[i + 2] = rk[j + 2]; rk[j + 2] = temp;
 temp = rk[i + 3]; rk[i + 3] = rk[j + 3]; rk[j + 3] = temp;
 }

Pass The Salt 2019 23

7/1/2019 Reversing a Firmware uploader & others NFC stories

file:///D:/projects/pts2019/dist/index.html 24/41

The solution

It was setting a decryption key all along!
The whole program can be rewritten as the following python script:

def createbin(file_inp, file_out):
 data_inp = file_inp.read()
 for i in range(0,len(data_inp),16):
 aes = AES.new(b'designed by dxls', AES.MODE_CBC, '\0'*16)
 block = data_inp[i:i+16]
 scrambled = [(block[j] ^ ((0x2d + i + j)&0xff)) for j in range(16)]
 out = aes.decrypt(bytes(scrambled))
 file_out.write(out)

Pass The Salt 2019 24

7/1/2019 Reversing a Firmware uploader & others NFC stories

file:///D:/projects/pts2019/dist/index.html 25/41

Moving to BOOT_LOADER_EXE.exe

Use the same way to decompile

Exe is basically a recompile of dfu-programmer

The strings are the same, so you can take https://github.com/dfu-
programmer/dfu-programmer/blob/master/src/commands.c and
rename all functions

Pass The Salt 2019 25

https://github.com/dfu-programmer/dfu-programmer/blob/master/src/commands.c

7/1/2019 Reversing a Firmware uploader & others NFC stories

file:///D:/projects/pts2019/dist/index.html 26/41

execute_flash function

 iVar2 = intel_hex_to_buffer(local_2c,uVar4,uVar1);
 if (iVar2 == 0) {
 iVar2 = FUN_004069d0(*(char **)(param_2 + 0x58),(int)local_2c);
 pcVar5 = fprintf_exref;
 if (-1 < iVar2) {
 pcVar6 = __iob_func_exref;
 if (0 < iVar2) {
 DEBUG("commands.c","execute_flash",0x108,0x28,
 "WARNING: File contains 0x%X bytes outside target memory.\n");
 if (local_30 == 0) {
 DEBUG("commands.c","execute_flash",0x10b,0x28,
 "There may be data in the user page (offset %#X).\n");
 DEBUG("commands.c","execute_flash",0x10c,0x28,"Inspect the hex file or try flash-user.\n")
 ;
 }

There is a quite suspicious FUN_004069d0 function...
Pass The Salt 2019 26

7/1/2019 Reversing a Firmware uploader & others NFC stories

file:///D:/projects/pts2019/dist/index.html 27/41

The complete solution

FUN_004069d0 is AES encryption. But it does not removes the rolling
xor !

In summary

Createbin xor the buffer and decrypts it with AES.

BOOTLOADER encrypts (therefore decrypts it) with AES and uploads
it.

Bootloader undoes the rolling xor

Pass The Salt 2019 27

7/1/2019 Reversing a Firmware uploader & others NFC stories

file:///D:/projects/pts2019/dist/index.html 28/41

The bootloader

We have 3 versions of bootloader compatible with the device:

atxmega32a4u_104 : 'Original' ATMEL bootloader

RevE-atxmega32a4u_104_modified.bin : ATMEL bootloader but with
correct PINs for buttons

ChameleonMiniRDV2.0_ATxmega32A4U : Factory driver

Pass The Salt 2019 28

7/1/2019 Reversing a Firmware uploader & others NFC stories

file:///D:/projects/pts2019/dist/index.html 29/41

Inside the bootloader

Ghidra is very good, can even decompile AVR code

void FUN_code_000318(undefined4 uParm1,undefined2 uParm2)
{
 sVar6 = 0;
 while(true) {
 bVar5 = (byte)sVar6;
 cVar7 = (char)((ushort)sVar6 >> 8);
 if ((char)(cVar4 + (bVar5 < bVar3)) <= cVar7) break;
 pbVar8 = (byte *)CONCAT11((char)((ushort)uVar1 >> 8) + cVar7 + CARRY1((byte)uVar1,bVar5),
 (byte)uVar1 + bVar5);
 *pbVar8 = *pbVar8 ^ cVar2 + bVar5;
 sVar6 = sVar6 + 1;
 }
}

Pass The Salt 2019 29

7/1/2019 Reversing a Firmware uploader & others NFC stories

file:///D:/projects/pts2019/dist/index.html 30/41

What we can do now

We are able to:

Build a firmware

Upload a firmware

Get rid of those pesky executable files

Work from Windows, Linux, MacOS

Pass The Salt 2019 30

7/1/2019 Reversing a Firmware uploader & others NFC stories

file:///D:/projects/pts2019/dist/index.html 31/41

How to handle errors

Mistakes happened. While reversing, I tried to upload "prepared"
.hex files to the target. However, I would upload a "wrong" file now

and then, thus soft bricking my unit .

The only solution is to use a hardware writer with a setup such as an
AVRISP mkII.

You can program application data, or, if you reset the whole chip,
even reupload a new bootloader.

Pass The Salt 2019 31

7/1/2019 Reversing a Firmware uploader & others NFC stories

file:///D:/projects/pts2019/dist/index.html 32/41

Hardware setup

Pass The Salt 2019 32

7/1/2019 Reversing a Firmware uploader & others NFC stories

file:///D:/projects/pts2019/dist/index.html 33/41

Bonus

loc = 0x408470 #debug print function
refs = getReferencesTo(toAddr(loc))
for r in refs:
 callee = r.getFromAddress()
 inst = getInstructionAt(callee)
 inst = getInstructionBefore(inst) #C file name push
 inst = getInstructionBefore(inst) #Function name push
 pushaddr = toAddr(inst.getDefaultOperandRepresentation(0))
 if pushaddr > 0x408000: #Simple filter
 func = getFunctionBefore(inst.getAddress())
 if (func.getName().startswith("FUN_")): #Don't rename twice
 newname = getDataAt(pushaddr).getValue()
 print(func, "=>", newname)
 func.setName(newname, ghidra.program.model.symbol.SourceType.USER_DEFINED)

Pass The Salt 2019 33

7/1/2019 Reversing a Firmware uploader & others NFC stories

file:///D:/projects/pts2019/dist/index.html 34/41

Conclusion

We have a pretty good insight on what's needed in order to create
a complete open source solution for "unlocking" the device.

If you can program the AVR directly, it's quite easy to upload the
correct bootloader.

Next steps

Convince a default dfu-programmer to program without verifying
(half yes)

Upload a program that reprograms the bootloader

See if the SPM helper is present in the original bootloader.

Pass The Salt 2019 34

7/1/2019 Reversing a Firmware uploader & others NFC stories

file:///D:/projects/pts2019/dist/index.html 35/41

 The strange case of
the half working NFC
tags

A little while ago, a friend had an
apartment inside a larger structure.
He wanted some additional tags so I
was happy to make two clones of his
two tags.
Let's call them red and green .

Pass The Salt 2019 35

7/1/2019 Reversing a Firmware uploader & others NFC stories

file:///D:/projects/pts2019/dist/index.html 36/41

Plan of the door
locks

There are basically 3 readers:

One to get to the complex
from outside 1 (orange)

One to get out from the
complex 2 (cyan)

One to get to get inside 3
(magenta)

Pass The Salt 2019 36

7/1/2019 Reversing a Firmware uploader & others NFC stories

file:///D:/projects/pts2019/dist/index.html 37/41

A few month in

Everything works fine and my friend is happy! However, after some
months, the clones worked... erratically.

Sometimes the red tag wouldn't work, or green, or both. And I was
getting very strange reports.

Some times the door 2 would open, or the door 1, with different tags
anytime. I would clone again the tags but the situation would become
erratic very quickly.

So... what happened ?
Pass The Salt 2019 37

7/1/2019 Reversing a Firmware uploader & others NFC stories

file:///D:/projects/pts2019/dist/index.html 38/41

Diffing to the rescue

I had the chance to be able to get to the location myself. Armed with
proxmark and Mifare Classic Tool, I could finally crack the mystery.

When you approached a tag which was working on reader 1 or 2
(but not 3), it would write the tag and it would produce the following
diff:
AE05FF531F10 ⇒ AE06FF531F10

and in another location,
..0A........ ⇒ ..09........

Pass The Salt 2019 38

7/1/2019 Reversing a Firmware uploader & others NFC stories

file:///D:/projects/pts2019/dist/index.html 39/41

But why the erratic behaviour

Turns out that the counter wasn't on 8 (or 16...) bits but only on 4 bits
and would wrap around. That means, a clone with a wrong counter
would work one time out of 16.

So, by pure luck tags would 'work', deactivate the others, etcetera...

Still doesn't explain why the tags would have worked perfectly before

Pass The Salt 2019 39

7/1/2019 Reversing a Firmware uploader & others NFC stories

file:///D:/projects/pts2019/dist/index.html 40/41

Final take

By digging in my backups, I found an old dump and where the counter
sector is, it was only 0 s...
The reader's software must have been upgraded!

But, as with all upgrades, it means you need to have an upgrade plan...
So you can craft a 'old' tag with only 0 and it would overwrite the
sector and update the counter. But there is a feature of Mifare that
specifies access rights

So... let's create a tag with only 0 in the sector and readonly on that
sector. It actually half works! (Exit only)

Pass The Salt 2019 40

7/1/2019 Reversing a Firmware uploader & others NFC stories

file:///D:/projects/pts2019/dist/index.html 41/41

Thank you/Questions

If you want to contact me:

I'm here all 3 days! Come and chat!

@slurdge on almost any platform/social network

slurdge@slurdge.org

No emojis were harmed during the making of this presentation

Pass The Salt 2019 41

mailto:slurdge@slurdge.org

