
© Fraunhofer

Hunting Binary Code Vulnerabilities Across CPU Architectures

Pass The SALT 2019

CWE_CHECKER

© Fraunhofer

$whoarewe

 Thomas Barabosch

 @tbarabosch

 PhD in computer science

 Binary Code Analyst (*ware)

 Hobbyist Bug Hunter (*BSD, Router, Hypervisor, …)

 Nils-Edvin Enkelmann

 PhD in mathematics

 Security researcher with focus on binary code analysis

© Fraunhofer

OUTLINE

1. Motivation

2. cwe_checker

3. Case Studies

4. Integration with other tools

5. Future Work

6. Conclus ion

© Fraunhofer

MOTIVATION

 Goal: Security analysis of closed source firmware

 Bug hunting through reverse engineering is tedious and time-consuming

Automation!

© Fraunhofer

MOTIVATION

 Many different CPU architectures in the IoT-world

 x86/x64, PowerPC, MIPS, ARM, ...

 Each CPU-architecture has its own instruction set

 e.g. x86/x64 alone has hundreds of assembly instructions

 Assembly instructions can have complex side effects

 What does ADD actually do?

 Working directly on the disassembly does not scale

 Solution: build analyses up on intermediate representation language

© Fraunhofer

ARM x86

Bil IRBil IR

© Fraunhofer

Binary Analysis Platform (BAP)

 Reverse engineering and program analysis platform

 Focus: binary code

 Disassembles and lifts to Intermediate Representation (BIL)

 Lifters available for x86, x86-64, ARM, PowerPC, MIPS

 BIL comprises less than 40 instructions

 Written in Ocaml

 Bindings for C, Python, Rust

 https://github.com/BinaryAnalysisPlatform/bap

© Fraunhofer

CWE_CHECKER

© Fraunhofer

cwe_checker – Overview

 Detection of CWEs (Common Weakness Enumeration) through heuristics

 Based on top of BAP

 Inspired by ClangAnalyzer et al.

 Architecture-independent through use of BAP’s IR

 Modular structure

 13 CWE-modules using static analysis

 4 CWE-modules using symbolic execution

 Easy to add YOUR custom check

 Easy deployment through Docker or Opam

© Fraunhofer

cwe_checker – Architecture

cwe_checker

Binary Analysis Platform (BAP)

Modules CWE-215

CWE-243

CWE-332

CWE-367

[…]

MIPS

ELF

ARM

ELF

X86

ELF

Reports

Lifting

© Fraunhofer

cwe_checker – A Running Example

© Fraunhofer

cwe_checker – Disassembly of Targets

cwe_checker

Binary Analysis Platform (BAP)

Modules CWE-215

CWE-243

CWE-332

CWE-367

[…]

MIPS

ELF

ARM

ELF

X86

ELF

© Fraunhofer

cwe_checker – Lifting to BIL

cwe_checker

Binary Analysis Platform (BAP)

Modules CWE-215

CWE-243

CWE-332

CWE-367

[…]

MIPS

ELF

ARM

ELF

X86

ELF

© Fraunhofer

cwe_checker – A (partial) report

cwe_checker

Binary Analysis Platform (BAP)

Modules CWE-215

CWE-243

CWE-332

CWE-367

[…]

MIPS

ELF

ARM

ELF

X86

ELF

© Fraunhofer

cwe_checker – A Running Example

© Fraunhofer

(Some) Pure Static Analysis Modules

 CWE-190: Integer Overflow

 CWE-215: Information Exposure Through Debug Information

 CWE-332: Insufficient Entropy in PRNG

 CWE-367: Time-of-check Time-of-use (TOCTOU) Race Condition

 CWE-476: NULL Pointer Dereference

 CWE-676: Use of Potentially Dangerous Function

© Fraunhofer

(Even More) Pure Static Analysis Modules

 CWE-243: Creation of chroot Jail Without Changing Working Directory

 CWE-248: Uncaught Exception

 CWE-426: Untrusted Search Path

 CWE-457: Use of Uninitialized Variable

 CWE-467: Use of sizeof() on a Pointer Type

 CWE-560: Use of umask() with chmod-style Argument

 CWE-782: Exposed IOCTL with Insufficient Access Control

© Fraunhofer

Symbolic Execution with BAP‘s Primus

 Static program analysis technique to explore program execution paths

 Symbolic values instead of concrete values

 Outputs symbolic expressions

 General issue: symbolic execution is time consuming (path explosion)

 Primus is BAP‘s framework for symbolic execution

 Primus is extendable via Primus LISP

 Library function stubs (e.g. malloc)

 Implementation of security checks

© Fraunhofer

Symbolic Execution-based Modules

 CWE-215: Out-of-bounds Read

 CWE-415: Double Free

 CWE-416: Use After Free

 CWE-787: Out-of-bounds Write

© Fraunhofer

CASE STUDIES

© Fraunhofer

CWE-190: Integer Overflow or Wraparound

 Multiplications + Memory Operations especially vulnerable

 Check for multiplication instructions before calls to malloc

 Assumption: If in basic block right before the call ⇒ no overflow
check!

 Checked functions: malloc, xmalloc, realloc

 Users can add functions

 Future improvement: use data flow analysis

 to see if attacker can control input / no sanitization at all

© Fraunhofer

CWE-190: Integer Overflow or Wraparound

© Fraunhofer

CWE-476: Possible NULL Pointer Dereference

 Many functions may return NULL on failure (e.g. malloc, open, …)

 Therefore: return value must be checked!

 Via Data Flow Analysis

 Taint return register

 Taint registers whose value is computed using a tainted register

 Search for execution paths where a tainted register is used for
memory access before a tainted register is checked

© Fraunhofer

CWE-476: Possible NULL Pointer Dereference

© Fraunhofer

CWE-476: Possible NULL Pointer Dereference

© Fraunhofer

INTEGRATION WITH OTHER TOOLS

© Fraunhofer

cwe_checker in FACT 1/2

© Fraunhofer

cwe_checker in FACT 2/2

© Fraunhofer

Visualize cwe_checker Results with IDA Pro

© Fraunhofer

LET‘S WRAP IT UP

© Fraunhofer

Current Limitations

 It‘s static analysis: false positives / false negatives

 Some checks are based on strong assumptions to simplify the analysis

 Symbolic execution is slow (especially on bigger binaries)

© Fraunhofer

Future Work

 Add more checks and improve correctness of older checks

 Improve pointer analysis

 Memory management checks via static analysis

 Maybe foundation of fully fledged type analysis

 Tool integration

 Improve IDA Pro support (start from within IDA)

 Add support for Ghidra (visualize results, start from within Ghidra)

© Fraunhofer

Conclusion

 cwe_checker is a static analysis tool to heuristically detect bug classes

 Thanks to its foundation BAP, it analyzes binaries of many architectures

 Including x86/x64, ARM, PPC, MIPS, …

 cwe_checker comprises a wide range of checks (currently 15+)

 from simple „pattern matching“ to data flow analysis-based checks

 Tool integration is a major concern: FACT + IDA Pro

© Fraunhofer

GET IT NOW!

 https://github.com/fkie-cad/cwe_checker

 Release: 0.2

 Ask for free stickers!

https://github.com/fkie-cad/cwe_checker

