
© Fraunhofer

Hunting Binary Code Vulnerabilities Across CPU Architectures

Pass The SALT 2019

CWE_CHECKER

© Fraunhofer

$whoarewe

Â Thomas Barabosch

Â @tbarabosch

Â PhD in computer science

Â Binary Code Analyst (* ware)

Â Hobbyist Bug Hunter (*BSD, Router, Hypervisor, Ż)

Â Nils-Edvin Enkelmann

Â PhD in mathematics

Â Security researcher with focus on binary code analysis

© Fraunhofer

OUTLINE

1. Motivation

2. cwe_checker

3. Case Studies

4. Integration with other tools

5. Future Work

6. Conclus ion

© Fraunhofer

MOTIVATION

Â Goal : Security analysis of closed source firmware

Â Bug hunting through reverse engineering is tedious and time -consuming

Automation!

© Fraunhofer

MOTIVATION

Â Many different CPU architectures in the IoT-world

Â x86/x64, PowerPC, MIPS, ARM, ...

Â Each CPU-architecture has its own instruction set

Â e.g. x86/x64 alone has hundreds of assembly instructions

Â Assembly instructions can have complex side effects

Â What does ADD actually do?

Â Working directly on the disassembly does not scale

Â Solution : build analyses up on intermediate representation language

© Fraunhofer

ARM x86

Bil IRBil IR

© Fraunhofer

Binary Analysis Platform (BAP)

Â Reverse engineering and program analysis platform

Â Focus: binary code

Â Disassembles and lifts to Intermediate Representation (BIL)

Â Lifters available for x86 , x86-64, ARM, PowerPC, MIPS

Â BIL comprises less than 40 instructions

Â Written in Ocaml

Â Bindings for C, Python, Rust

Â https://github.com/BinaryAnalysisPlatform/bap

© Fraunhofer

CWE_CHECKER

© Fraunhofer

cwe_checker ƉOverview

Â Detection of CWEs (Common Weakness Enumeration) through heuristics

Â Based on top of BAP

Â Inspired by ClangAnalyzer et al.

Â Architecture -independent through use of BAPƀs IR

Â Modular structure

Â 13 CWE-modules using static analysis

Â 4 CWE-modules using symbolic execution

Â Easy to add YOUR custom check

Â Easy deployment through Docker or Opam

© Fraunhofer

cwe_checker ƉArchitecture

cwe_checker

Binary Analysis Platform (BAP)

Modules CWE-215

CWE-243

CWE-332

CWE-367

[Ż]

MIPS

ELF

ARM

ELF

X86

ELF

Reports

Lifting

© Fraunhofer

cwe_checker ƉA Running Example

© Fraunhofer

cwe_checker ƉDisassembly of Targets

cwe_checker

Binary Analysis Platform (BAP)

Modules CWE-215

CWE-243

CWE-332

CWE-367

[Ż]

MIPS

ELF

ARM

ELF

X86

ELF

© Fraunhofer

cwe_checker ƉLifting to BIL

cwe_checker

Binary Analysis Platform (BAP)

Modules CWE-215

CWE-243

CWE-332

CWE-367

[Ż]

MIPS

ELF

ARM

ELF

X86

ELF

© Fraunhofer

cwe_checker ƉA (partial) report

cwe_checker

Binary Analysis Platform (BAP)

Modules CWE-215

CWE-243

CWE-332

CWE-367

[Ż]

MIPS

ELF

ARM

ELF

X86

ELF

© Fraunhofer

cwe_checker ƉA Running Example

© Fraunhofer

(Some) Pure Static Analysis Modules

Â CWE-190: Integer Overflow

Â CWE-215: Information Exposure Through Debug Information

Â CWE-332: Insufficient Entropy in PRNG

Â CWE-367: Time-of -check Time-of -use (TOCTOU) Race Condition

Â CWE-476: NULL Pointer Dereference

Â CWE-676: Use of Potentially Dangerous Function

© Fraunhofer

(Even More) Pure Static Analysis Modules

Â CWE-243: Creation of chroot Jail Without Changing Working Directory

Â CWE-248: Uncaught Exception

Â CWE-426: Untrusted Search Path

Â CWE-457: Use of Uninitialized Variable

Â CWE-467: Use of sizeof() on a Pointer Type

Â CWE-560: Use of umask() with chmod -style Argument

Â CWE-782: Exposed IOCTL with Insufficient Access Control

© Fraunhofer

Symbolic Execution with BAPſsPrimus

Â Static program analysis technique to explore program execution paths

Â Symbolic values instead of concrete values

Â Outputs symbolic expressions

Â General issue: symbolic execution is time consuming (path explosion)

Â Primus isBAPſsframework for symbolic execution

Â Primus is extendable via Primus LISP

Â Library function stubs (e.g. malloc)

Â Implementation of security checks

© Fraunhofer

Symbolic Execution -based Modules

Â CWE-215: Out -of -bounds Read

Â CWE-415: Double Free

Â CWE-416: Use After Free

Â CWE-787: Out -of -bounds Write

© Fraunhofer

CASE STUDIES

© Fraunhofer

CWE-190: Integer Overflow or Wraparound

Â Multiplications + Memory Operations especially vulnerable

Â Check for multiplication instructions before calls to malloc

Â Assumption: If in basic block right before the call ᵼno overflow
check!

Â Checked functions: malloc , xmalloc , realloc

Â Users can add functions

Â Future improvement : use data flow analysis

Â to see if attacker can control input / no sanitization at all

© Fraunhofer

CWE-190: Integer Overflow or Wraparound

© Fraunhofer

CWE-476: Possible NULL Pointer Dereference

Â Many functions may return NULL on failure (e.g. malloc, open, Ż)

Â Therefore: return value must be checked!

Â Via Data Flow Analysis

Â Taint return register

Â Taint registers whose value is computed using a tainted register

Â Search for execution paths where a tainted register is used for
memory access before a tainted register is checked

© Fraunhofer

CWE-476: Possible NULL Pointer Dereference

© Fraunhofer

CWE-476: Possible NULL Pointer Dereference

© Fraunhofer

INTEGRATION WITH OTHERTOOLS

© Fraunhofer

cwe_checker in FACT 1/2

© Fraunhofer

cwe_checker in FACT 2/2

