
Time-efficient assessment of open-source
projects for Red Teamers

Pass the Salt 2019

Thomas Chauchefoin (@swapgs)
Julien Szlamowicz (@SzLam_)

2 / 57

Agenda

 Introduction

 Methodology

 Findings

 Disclosure

 Conclusion

3 / 57

Introduction

4 / 57

$(id)

 Synacktiv is a French company focusing on offensive security:
manual assessment, source code review, reverse engineering...

 Three teams

 Pentest

 Reverse engineering

 Development

 We are remote-friendly

 Reach us at apply@synacktiv.com or
at the social event

Paris

RennesRennes

Lyon

Toulouse

5 / 57

WE NEED A
SYSADMIN

6 / 57

Context

 Red team assessment: only a fashionable term for “real-
world” pentest?

 Big scopes!

 Limited effort per exposed asset

 We need to reach the internal network as fast as we can

 Facing the Blue Team

 OSS is not less secure than proprietary software but:

 Easier to get and deploy in a lab

 Quicker to assess than an obfuscated / closed product

7 / 57

Case study

 This talk aims at presenting our (sort of) methodology and
findings in GLPI

 Hopefully didactic enough to be interesting to people not
working in infosec

 Discovered issues were patched several months ago

 Make sure you’re at least on 9.4.1.1

 Don’t expose it publicly

 Identified the first day of a 2-weeks Red Team engagement

 Gave us a good insight on the target’s internal network

8 / 57

GLPI ?

‘’GLPI ITSM is a software for business powered by open-source
technologies. Take control over your IT infrastructure: assets inventory,

tickets, MDM’’ (glpi-project.org)

 Mostly supported by Teclib’, editor of Armadito and Uhuru, under
GPLv2

 Plugins help adding various features

 Inventory

 MDM

 Software deployment
 Configuration

9 / 57

GLPI

 Telemetry shows it’s commonly used in France and Brazil

 28K pingbacks last year

 9K from French IP addresses

 You can add yourself on the website to show you like the
project

 C.N.A.M.T.S, 130K computers and 90K users (2007)

 Police Nationale, 100K computers (2012)

 Various government departments

 Seems like an interesting target in our context: let’s break it :-)

10 / 57

Considerations

 During regular pentests, you can be loud and intrusive

 Exhaustive rather than opportunistic

 During Red Team engagements, the goals change

 Get a foot in the door ASAP

 Remain undetected

 Deep compromise

 A single entry point is enough

 Time constraint

11 / 57

Methodology

12 / 57

Considerations

 What is a good Red Team vulnerability?

 Forget everything about client-side attacks in the first
place (except for phishing campaigns)

 No destructive actions

 Low forensic/detection footprints

 No feature breaking or raised exceptions (Sentry is
quite popular nowadays)

 Reproducible in our lab first

13 / 57

Replicating the environment

 When assessing OSS, you are never really in blackbox

 Try to replicate an accurate environment

 HTTP server

 CGI’s version

 Product version

 It will be very helpful to

 Avoid early detection

 Abuse specific configurations, vulnerabilities or behaviour

 Any information leak is valuable

14 / 57

Assessing the attack surface

 We are only interested in unauthenticated code paths

 PHP applications not using frameworks will often have
several scripts directly reachable

 Prevented by

 Ensuring a given constant is defined

 User has a session with a given value, etc

 In real life, these checks are always forgotten at least
once

15 / 57

Assessing the attack surface

16 / 57

Assessing the attack surface

 In practice, we tend to use a hybrid approach when
reading source code

 Find vulnerabilities quickly

 No need to be exhaustive

 The lab allows performing dynamic analysis and using
our blackbox skillset

17 / 57

Assessing the attack surface

 Our colleague @Tiyeuse developed a tool to find reachable files
“doing things”

 Not only declaring classes and functions

 Not exiting after checking for a constant declared in another file

 Possibility to add custom patterns to exclude authentication
checks

 GLPI had several pre-authenticated vulnerabilities in such files

 Less code to read

 Less things to understand

 Happier auditor :-)

18 / 57

Other tools and tricks

 We don’t have semantic tooling

 PHP-Parser can still help create a “smart grep”

 RIPS scanner is awesome

 But a bit expensive for everyday use

 Dumping every DB query to a log file

 Harder to miss SQL errors (injections)

 Easier to debug PoCs

 Instrument low-level PHP functions to search for specific
behaviours

 Unbalanced quotes?

 Profilers: fracker, xhprof

19 / 57

Assessing the attack surface

 Create a wrapper around $_GET and $_POST :

 No need to browse all the includes to find accepted
parameters

20 / 57

Approach

 After isolating access control functions, a quick run of
debroussailleuse gave us the list of reachable files

 Still ~400 files left (excluding vendors/)

 In theory, files in /scripts/ are protected by a .htaccess

 Our target uses nginx

 It’s in the official documentation

 AllowOverride is set to None since Apache 2.3.9

21 / 57

Findings

22 / 57

Information leak

 Accessing ajax/telemetry.php discloses

 GLPI version

 GLPI modules

 PHP version

 PHP modules

 Operating system

 HTTP server

 Enough to start creating a lab

23 / 57

DEMO

24 / 57

SQL injection in compute_dictionnary.php?

 Digging in scripts/ yields interesting results

 scripts/compute_dictionnary.php

25 / 57

SQL injection in compute_dictionnary.php?

26 / 57

SQL injection in compute_dictionnary.php?

 But it doesn’t work! :-S

27 / 57

SQL injection in compute_dictionnary.php?

 The reason lies in inc/includes.php

28 / 57

SQL injection in compute_dictionnary.php?

 Toolbox::sanitize() is implemented this way

 addslashes_deep()

 Recursive mysql_real_escape_string()

 clean_cross_side_scripting_deep()

 Replaces < > by their HTML entities

 sanitize() will fail in several cases (it’s regex time)

29 / 57

SQL injection in unlock_tasks.php

 A hit was found in scripts/unlock_tasks.php

 CVE-2019-10232

30 / 57

DEMO

31 / 57

SQL injection in unlock_tasks.php

 However…

 The injection doesn’t allow creating users

 Passwords are hashed with bcrypt

 PHP_PASSWORD_BRCRYPT_COST = 10
 Our 8 1080 Ti GPUs will hardly be enough

 Need to find another way to get in—let’s inspect the table glpi_users

 name

 password

 last_login

 password_forget_token

 personal_token

 api_token

32 / 57

SQL injection in unlock_tasks.php

 The Remember me feature is enabled by default and
uses the personal_token value

["2","$2y$10f10tNcc[...]wmVSUIi"]

[user_id, hash(personal_token)]

 Several hash algorithms supported

 Leaking a token is enough to log in

 We could also use the API key or reset users’ password

 Any data allowing to authenticate is a secret, they
should be stored in the database the same way

33 / 57

DEMO

34 / 57

Abusing the Remember me feature

 While looking Remember Me feature, its implementation
seemed weird

 Thanks to json_decode(), we can play with types of

 $cookie_id

 $cookie_token

35 / 57

Abusing the Remember me feature

36 / 57

Abusing the Remember me feature

 Then, our values are used this way

 $user getAuthToken()→ creates a new personal_token if
it doesn’t exist

37 / 57

Abusing the Remember me feature

 The personal_token is then compared with the hash
provided in the cookie

38 / 57

Abusing the Remember me feature

 The personal_token is then compared with the hash
provided in the cookie

39 / 57

Abusing the Remember me feature

 The hashed value to compare is controlled by the
attacker (CVE-2019-10233)

40 / 57

Abusing the Remember me feature

 If the provided hash doesn’t match any well-known
algorithms, we need to talk about PHP comparisons

41 / 57

Abusing the Remember me feature

 Quick reminder about PHP loose comparisons...

42 / 57

Abusing the Remember me feature

 Thus we can make the code compare

 We are likely able to find an int producing a suitable
SHA-1 output within a few tries

43 / 57

Abusing the Remember me feature

 @bitcoinctf brought to our attention that it is also
possible to do this…

 No more need to iterate over a few integers, a single
request is enough

44 / 57

DEMO

45 / 57

Going deeper

 We are admin on the solution (or any other user)

 But the goal is still to compromise the infrastructure

 We need to find something else on the authenticated
part

 Time to compromise the underlying server

 Old vulnerabilities are patched

46 / 57

Fusion Inventory

 While gathering technical details about the target’s
infrastructure using regular features …

 Back to the good old blackbox reflexes, a wild LFI
appears

47 / 57

Fusion Inventory

 It works and this is pretty cool but we found nothing
valuable on the server, let’s take a look at the code of the
plugin

 Unexpected

 Does the PluginFusioninventoryToolbox class
implement more interesting functions?

48 / 57

Fusion Inventory

 Yes it does!

 Only 1 requirement

 $args has to be an Array

49 / 57

Fusion Inventory

 Fair enough, PHP allows playing with parameters

 call_user_func_array can be used in this situation

 CVE-2019-10477

50 / 57

Fusion Inventory

 One last thing

 There’s no mention of a session or cookie at any moment

 That’s ok, you can remove it

 This code is reachable without authentication :-)

51 / 57

DEMO

52 / 57

Disclosure

53 / 57

Disclosure

 Timeline

 The disclosure process was smooth and efficient

 Maintainers responded and shipped patches in a timely
manner; thanks again!

Date Event

Early February Issues reported

Early March Issues fixed publicly on GitHub

March 15th Release of 9.4.1

April 11th Release of 9.3 backports (9.3.4)

Late April Advisories publication

Early July Here we are

54 / 57

Do people patch?

 Telemetry is not very reliable

 Old/test instances aren’t removed after some time

 All instances might not have access to the Internet

 3 days after patches came out, 30 instances were up-to-date

 3 months later (end of June)

 8046 have been upgraded

 26807 remain vulnerable

 Digitemis created GLPIScan to check your instances

 https://github.com/Digitemis/GLPIScan/

55 / 57

Conclusion

56 / 57

Conclusion and next steps

 Useless in this case but we now hunt for GLPI in internal
pentests

 Indirectly, companies contribute to OSS security by including
such products in pentest scopes

 We need more

 Collaborative tools to review code

 “Smart” static scanners

 QL

 GLPI and MDM agents are cool targets for Red Teams and
they need more attention/security contribution

THANKS FOR YOUR ATTENTION!

TIME FOR
QUESTIONS

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57

