
Time-efficient assessment of open-source
projects for Red Teamers

Pass the Salt 2019

Thomas Chauchefoin (@swapgs)
Julien Szlamowicz (@SzLam_)

2 / 57

Agenda

 Introduction

 Methodology

 Findings

 Disclosure

 Conclusion

3 / 57

Introduction

4 / 57

$(id)

 Synacktiv is a French company focusing on offensive security:
manual assessment, source code review, reverse engineering...

 Three teams

 Pentest

 Reverse engineering

 Development

 We are remote-friendly

 Reach us at apply@synacktiv.com or
at the social event

Paris

RennesRennes

Lyon

Toulouse

5 / 57

WE NEED A
SYSADMIN

6 / 57

Context

 Red team assessment: only a fashionable term for “real-
world” pentest?

 Big scopes!

 Limited effort per exposed asset

 We need to reach the internal network as fast as we can

 Facing the Blue Team

 OSS is not less secure than proprietary software but:

 Easier to get and deploy in a lab

 Quicker to assess than an obfuscated / closed product

7 / 57

Case study

 This talk aims at presenting our (sort of) methodology and
findings in GLPI

 Hopefully didactic enough to be interesting to people not
working in infosec

 Discovered issues were patched several months ago

 Make sure you’re at least on 9.4.1.1

 Don’t expose it publicly

 Identified the first day of a 2-weeks Red Team engagement

 Gave us a good insight on the target’s internal network

8 / 57

GLPI ?

‘’GLPI ITSM is a software for business powered by open-source
technologies. Take control over your IT infrastructure: assets inventory,

tickets, MDM’’ (glpi-project.org)

 Mostly supported by Teclib’, editor of Armadito and Uhuru, under
GPLv2

 Plugins help adding various features

 Inventory

 MDM

 Software deployment
 Configuration

9 / 57

GLPI

 Telemetry shows it’s commonly used in France and Brazil

 28K pingbacks last year

 9K from French IP addresses

 You can add yourself on the website to show you like the
project

 C.N.A.M.T.S, 130K computers and 90K users (2007)

 Police Nationale, 100K computers (2012)

 Various government departments

 Seems like an interesting target in our context: let’s break it :-)

10 / 57

Considerations

 During regular pentests, you can be loud and intrusive

 Exhaustive rather than opportunistic

 During Red Team engagements, the goals change

 Get a foot in the door ASAP

 Remain undetected

 Deep compromise

 A single entry point is enough

 Time constraint

11 / 57

Methodology

12 / 57

Considerations

 What is a good Red Team vulnerability?

 Forget everything about client-side attacks in the first
place (except for phishing campaigns)

 No destructive actions

 Low forensic/detection footprints

 No feature breaking or raised exceptions (Sentry is
quite popular nowadays)

 Reproducible in our lab first

13 / 57

Replicating the environment

 When assessing OSS, you are never really in blackbox

 Try to replicate an accurate environment

 HTTP server

 CGI’s version

 Product version

 It will be very helpful to

 Avoid early detection

 Abuse specific configurations, vulnerabilities or behaviour

 Any information leak is valuable

14 / 57

Assessing the attack surface

 We are only interested in unauthenticated code paths

 PHP applications not using frameworks will often have
several scripts directly reachable

 Prevented by

 Ensuring a given constant is defined

 User has a session with a given value, etc

 In real life, these checks are always forgotten at least
once

15 / 57

Assessing the attack surface

16 / 57

Assessing the attack surface

 In practice, we tend to use a hybrid approach when
reading source code

 Find vulnerabilities quickly

 No need to be exhaustive

 The lab allows performing dynamic analysis and using
our blackbox skillset

17 / 57

Assessing the attack surface

 Our colleague @Tiyeuse developed a tool to find reachable files
“doing things”

 Not only declaring classes and functions

 Not exiting after checking for a constant declared in another file

 Possibility to add custom patterns to exclude authentication
checks

 GLPI had several pre-authenticated vulnerabilities in such files

 Less code to read

 Less things to understand

 Happier auditor :-)

18 / 57

Other tools and tricks

 We don’t have semantic tooling

 PHP-Parser can still help create a “smart grep”

 RIPS scanner is awesome

 But a bit expensive for everyday use

 Dumping every DB query to a log file

 Harder to miss SQL errors (injections)

 Easier to debug PoCs

 Instrument low-level PHP functions to search for specific
behaviours

 Unbalanced quotes?

 Profilers: fracker, xhprof

19 / 57

Assessing the attack surface

 Create a wrapper around $_GET and $_POST :

 No need to browse all the includes to find accepted
parameters

20 / 57

Approach

 After isolating access control functions, a quick run of
debroussailleuse gave us the list of reachable files

 Still ~400 files left (excluding vendors/)

 In theory, files in /scripts/ are protected by a .htaccess

 Our target uses nginx

 It’s in the official documentation

 AllowOverride is set to None since Apache 2.3.9

21 / 57

Findings

22 / 57

Information leak

 Accessing ajax/telemetry.php discloses

 GLPI version

 GLPI modules

 PHP version

 PHP modules

 Operating system

 HTTP server

 Enough to start creating a lab

23 / 57

DEMO

24 / 57

SQL injection in compute_dictionnary.php?

 Digging in scripts/ yields interesting results

 scripts/compute_dictionnary.php

25 / 57

SQL injection in compute_dictionnary.php?

26 / 57

SQL injection in compute_dictionnary.php?

 But it doesn’t work! :-S

27 / 57

SQL injection in compute_dictionnary.php?

 The reason lies in inc/includes.php

28 / 57

SQL injection in compute_dictionnary.php?

 Toolbox::sanitize() is implemented this way

 addslashes_deep()

 Recursive mysql_real_escape_string()

 clean_cross_side_scripting_deep()

 Replaces < > by their HTML entities

 sanitize() will fail in several cases (it’s regex time)

29 / 57

SQL injection in unlock_tasks.php

 A hit was found in scripts/unlock_tasks.php

 CVE-2019-10232

30 / 57

DEMO

31 / 57

SQL injection in unlock_tasks.php

 However…

 The injection doesn’t allow creating users

 Passwords are hashed with bcrypt

 PHP_PASSWORD_BRCRYPT_COST = 10
 Our 8 1080 Ti GPUs will hardly be enough

 Need to find another way to get in—let’s inspect the table glpi_users

 name

 password

 last_login

 password_forget_token

 personal_token

 api_token

32 / 57

SQL injection in unlock_tasks.php

 The Remember me feature is enabled by default and
uses the personal_token value

["2","$2y$10f10tNcc[...]wmVSUIi"]

[user_id, hash(personal_token)]

 Several hash algorithms supported

 Leaking a token is enough to log in

 We could also use the API key or reset users’ password

 Any data allowing to authenticate is a secret, they
should be stored in the database the same way

33 / 57

DEMO

34 / 57

Abusing the Remember me feature

 While looking Remember Me feature, its implementation
seemed weird

 Thanks to json_decode(), we can play with types of

 $cookie_id

 $cookie_token

35 / 57

Abusing the Remember me feature

36 / 57

Abusing the Remember me feature

 Then, our values are used this way

 $user getAuthToken()→ creates a new personal_token if
it doesn’t exist

37 / 57

Abusing the Remember me feature

 The personal_token is then compared with the hash
provided in the cookie

38 / 57

Abusing the Remember me feature

 The personal_token is then compared with the hash
provided in the cookie

39 / 57

Abusing the Remember me feature

 The hashed value to compare is controlled by the
attacker (CVE-2019-10233)

40 / 57

Abusing the Remember me feature

 If the provided hash doesn’t match any well-known
algorithms, we need to talk about PHP comparisons

41 / 57

Abusing the Remember me feature

 Quick reminder about PHP loose comparisons...

42 / 57

Abusing the Remember me feature

 Thus we can make the code compare

 We are likely able to find an int producing a suitable
SHA-1 output within a few tries

43 / 57

Abusing the Remember me feature

 @bitcoinctf brought to our attention that it is also
possible to do this…

 No more need to iterate over a few integers, a single
request is enough

44 / 57

DEMO

45 / 57

Going deeper

 We are admin on the solution (or any other user)

 But the goal is still to compromise the infrastructure

 We need to find something else on the authenticated
part

 Time to compromise the underlying server

 Old vulnerabilities are patched

46 / 57

Fusion Inventory

 While gathering technical details about the target’s
infrastructure using regular features …

 Back to the good old blackbox reflexes, a wild LFI
appears

47 / 57

Fusion Inventory

 It works and this is pretty cool but we found nothing
valuable on the server, let’s take a look at the code of the
plugin

 Unexpected

 Does the PluginFusioninventoryToolbox class
implement more interesting functions?

48 / 57

Fusion Inventory

 Yes it does!

 Only 1 requirement

 $args has to be an Array

49 / 57

Fusion Inventory

 Fair enough, PHP allows playing with parameters

 call_user_func_array can be used in this situation

 CVE-2019-10477

50 / 57

Fusion Inventory

 One last thing

 There’s no mention of a session or cookie at any moment

 That’s ok, you can remove it

 This code is reachable without authentication :-)

51 / 57

DEMO

52 / 57

Disclosure

53 / 57

Disclosure

 Timeline

 The disclosure process was smooth and efficient

 Maintainers responded and shipped patches in a timely
manner; thanks again!

Date Event

Early February Issues reported

Early March Issues fixed publicly on GitHub

March 15th Release of 9.4.1

April 11th Release of 9.3 backports (9.3.4)

Late April Advisories publication

Early July Here we are

54 / 57

Do people patch?

 Telemetry is not very reliable

 Old/test instances aren’t removed after some time

 All instances might not have access to the Internet

 3 days after patches came out, 30 instances were up-to-date

 3 months later (end of June)

 8046 have been upgraded

 26807 remain vulnerable

 Digitemis created GLPIScan to check your instances

 https://github.com/Digitemis/GLPIScan/

55 / 57

Conclusion

56 / 57

Conclusion and next steps

 Useless in this case but we now hunt for GLPI in internal
pentests

 Indirectly, companies contribute to OSS security by including
such products in pentest scopes

 We need more

 Collaborative tools to review code

 “Smart” static scanners

 QL

 GLPI and MDM agents are cool targets for Red Teams and
they need more attention/security contribution

THANKS FOR YOUR ATTENTION!

TIME FOR
QUESTIONS

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57

