
CURLCURL
YLMRXYLMRX

Created: 2019-07-03 Wed 11:43

1

ABOUTABOUT
Yoann "fuzzy" Lamouroux:

Reverse-engineer and security expert @dataimpact
(we're hiring ���)
Former sysadmin
Trol ˆ Wdocumented opinions:

xoxopowo@twitter

legreffier@irc.freenode.net

ABOUT LAST YEARABOUT LAST YEAR

ABOUT LAST YEARABOUT LAST YEAR
5' is short (except when prod is down)

ABOUT LAST YEARABOUT LAST YEAR
5' is short (except when prod is down)
Now I have 20 (w00t)

ABOUT LAST YEARABOUT LAST YEAR
5' is short (except when prod is down)
Now I have 20 (w00t)
I hope I deal better with time

ABOUT LAST YEARABOUT LAST YEAR
5' is short (except when prod is down)
Now I have 20 (w00t)
I hope I deal better with time
(so I made a slide about dealing with time)

ABOUT LAST YEARABOUT LAST YEAR
5' is short (except when prod is down)
Now I have 20 (w00t)
I hope I deal better with time
(so I made a slide about dealing with time)
No more curling jokes (sorry)

TRIVIATRIVIA
Project started in 1996
Still maintained by Daniel Stenberg (@badger)
libcurl for about every language out there
The curl binary is in EVERY default install

ALL OF THEMALL OF THEM

ALL OF THEMALL OF THEM
GNU/Linux, *BSD

ALL OF THEMALL OF THEM
GNU/Linux, *BSD
MacOS

ALL OF THEMALL OF THEM
GNU/Linux, *BSD
MacOS
Windows 10 (recently)

SOME QUESTIONSSOME QUESTIONS
curl is old
curl is badly documented (?)
DevTools (Firefox, Chrome) is good
httpie is neater/prettier
python-requests

SOME ANSWERSSOME ANSWERS
Old means:

Good
Stable/reliable

DevTools are indeed good
httpie is a curl wrapper
python-requests is python (hang-on, brb)

DOCUMENTATIONDOCUMENTATION
You usually need curl in critical situations
No time to dig through 3k lines manual

EVERYWHEREEVERYWHERE
DevTools won't get you far beyond the browser
Today's IT imply:

EVERYWHEREEVERYWHERE
DevTools won't get you far beyond the browser
Today's IT imply:
Reverse-proxies

EVERYWHEREEVERYWHERE
DevTools won't get you far beyond the browser
Today's IT imply:
Reverse-proxies
Cloudy jokes

EVERYWHEREEVERYWHERE
DevTools won't get you far beyond the browser
Today's IT imply:
Reverse-proxies
Cloudy jokes
(aka. mai', aka. Kloug{Front,Flare,…})

EVERYWHEREEVERYWHERE
DevTools won't get you far beyond the browser
Today's IT imply:
Reverse-proxies
Cloudy jokes
(aka. mai', aka. Kloug{Front,Flare,…})
… whatever cool kids use these days

EVERYWHEREEVERYWHERE
DevTools won't get you far beyond the browser
Today's IT imply:
Reverse-proxies
Cloudy jokes
(aka. mai', aka. Kloug{Front,Flare,…})
… whatever cool kids use these days
And shiny boxes (aka. docker)

EVERYWHEREEVERYWHERE
DevTools won't get you far beyond the browser
Today's IT imply:
Reverse-proxies
Cloudy jokes
(aka. mai', aka. Kloug{Front,Flare,…})
… whatever cool kids use these days
And shiny boxes (aka. docker)
Tighter firewall policy (aka. no internets)

EVERYWHEREEVERYWHERE
DevTools won't get you far beyond the browser
Today's IT imply:
Reverse-proxies
Cloudy jokes
(aka. mai', aka. Kloug{Front,Flare,…})
… whatever cool kids use these days
And shiny boxes (aka. docker)
Tighter firewall policy (aka. no internets)
Just because you can run Chrome in docker,

EVERYWHEREEVERYWHERE
DevTools won't get you far beyond the browser
Today's IT imply:
Reverse-proxies
Cloudy jokes
(aka. mai', aka. Kloug{Front,Flare,…})
… whatever cool kids use these days
And shiny boxes (aka. docker)
Tighter firewall policy (aka. no internets)
Just because you can run Chrome in docker,
… doesn't mean you should

BASICSBASICS

Display body on stdout.

>> curl https://www.example.com/

VERBOSEVERBOSE
 curl -v https://httpbin.org > /dev/null
 * Rebuilt URL to: https://httpbin.org/
 % Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
 0 0 0 0 0 0 0 0 --:--:-- --:--:-- --:--:-- 0* Trying 34.230.136.58...
 * TCP_NODELAY set
 * Connected to httpbin.org (34.230.136.58) port 443 (#0)
 * ALPN, offering h2
 * ALPN, offering http/1.1
 * successfully set certificate verify locations:
 * CAfile: /etc/ssl/certs/ca-certificates.crt
 CApath: /etc/ssl/certs
 } [5 bytes data]
 * (304) (OUT), TLS handshake, Client hello (1):
 } [512 bytes data]
 * (304) (IN), TLS handshake, Server hello (2):
 { [89 bytes data]
 * TLSv1.2 (IN), TLS handshake, Certificate (11):
 { [4832 bytes data]
 * TLSv1.2 (IN), TLS handshake, Server key exchange (12):

PREFIXES:PREFIXES:
* : is information
> : protocol verbose FROM your computer (*)
< : protocol verbose TO your computer (*)
} : encrypted data FROM your computer
{ : encrypted data TO your computer
[xxx] : size (in bytes) of data transferred.

(ssl verbose with brackets is shown only when stdout is redirected)

(*) : doesn't mean it's not encrypted

MORE VERBOSEMORE VERBOSE
tcpdump might not be the answer (yet).

--trace and --trace-ascii for byte-per-byte analysis.

Use - or filename as an argument to write to stdout or to a file.

CUSTOM HEADERSCUSTOM HEADERS
-H (or --header) : to send custom headers
Add 'Key: Value' for each headers
-A foo: is a shortcut to -H 'User-Agent: foo'
-b foo=bar: is a shortcut to -H 'Cookie: foo=bar'

(Cookies are just headers your browser is used to save)

COOKIESCOOKIES
Not saved by default
Use -c to save cookies to a file (- to display on stdout)
Use -b to read from a file (it won't by default)

TIMER AFTER TIMETIMER AFTER TIME

Have-you ever seen this ?:

time curl http://example.org

TRY :TRY :
curl --trace-time -v http://example.org

(Only works in verbose or trace mode)

TRY :TRY :
curl --trace-time -v http://example.org

(Only works in verbose or trace mode)

Unless you do want to check the cpu-time / user-time of an HTTP
client request.

TRY :TRY :
curl --trace-time -v http://example.org

(Only works in verbose or trace mode)

Unless you do want to check the cpu-time / user-time of an HTTP
client request.

(you don't)

ANOTHER APPROACHANOTHER APPROACH
You can write many variables on output, with the format string

option including:

Request information:
http_code

http_version

Time and speed:
time_total

speed_download

Many more…

FOR EXAMPLE:FOR EXAMPLE:

Introducing -oOUTFILE, much prettier than ">/dev/null"
Also introducing the -s (--silent) option to inhibit the ugly
progress metric

curl -w "http/%{http_version} %{http_code} -- %{time_total}" -s -o/dev/null http://example.com

FOR EXAMPLE:FOR EXAMPLE:

Introducing -oOUTFILE, much prettier than ">/dev/null"
Also introducing the -s (--silent) option to inhibit the ugly
progress metric

curl -w "http/%{http_version} %{http_code} -- %{time_total}" -s -o/dev/null http://example.com

We can also mention --stderr to control the error output

FOR EXAMPLE:FOR EXAMPLE:

Introducing -oOUTFILE, much prettier than ">/dev/null"
Also introducing the -s (--silent) option to inhibit the ugly
progress metric

curl -w "http/%{http_version} %{http_code} -- %{time_total}" -s -o/dev/null http://example.com

We can also mention --stderr to control the error output
Use with - to direct it to stdout

FOR EXAMPLE:FOR EXAMPLE:

Introducing -oOUTFILE, much prettier than ">/dev/null"
Also introducing the -s (--silent) option to inhibit the ugly
progress metric

curl -w "http/%{http_version} %{http_code} -- %{time_total}" -s -o/dev/null http://example.com

We can also mention --stderr to control the error output
Use with - to direct it to stdout
Or whatever filename

FOR EXAMPLE:FOR EXAMPLE:

Introducing -oOUTFILE, much prettier than ">/dev/null"
Also introducing the -s (--silent) option to inhibit the ugly
progress metric

curl -w "http/%{http_version} %{http_code} -- %{time_total}" -s -o/dev/null http://example.com

We can also mention --stderr to control the error output
Use with - to direct it to stdout
Or whatever filename
>15 years using shells, still can't handle std flows ?

FOR EXAMPLE:FOR EXAMPLE:

Introducing -oOUTFILE, much prettier than ">/dev/null"
Also introducing the -s (--silent) option to inhibit the ugly
progress metric

curl -w "http/%{http_version} %{http_code} -- %{time_total}" -s -o/dev/null http://example.com

We can also mention --stderr to control the error output
Use with - to direct it to stdout
Or whatever filename
>15 years using shells, still can't handle std flows ?
curl got your back.

DID YOU EVER ?DID YOU EVER ?

DID YOU EVER ?DID YOU EVER ?
…

DID YOU EVER ?DID YOU EVER ?
…

Need to edit /etc/hosts ?

DID YOU EVER ?DID YOU EVER ?
…

Need to edit /etc/hosts ?

curl -v --resolve www.example.com:443:1.2.3.4 https://www.example.com/

DID YOU EVER ?DID YOU EVER ?
…

Need to edit /etc/hosts ?

No need to play around with "Host" header

curl -v --resolve www.example.com:443:1.2.3.4 https://www.example.com/

MEMORY ALLOCATIONMEMORY ALLOCATION
PROBLEMSPROBLEMS

MEMORY ALLOCATIONMEMORY ALLOCATION
PROBLEMSPROBLEMS

No. Don't.

MEMORY ALLOCATIONMEMORY ALLOCATION
PROBLEMSPROBLEMS

No. Don't.

All the options I mentioned can be added to $HOME/.curlrc

MEMORY ALLOCATIONMEMORY ALLOCATION
PROBLEMSPROBLEMS

No. Don't.

All the options I mentioned can be added to $HOME/.curlrc

Or write several of these, and recall them with -K filename, or
--config

CURL PLAYS NICE WITHCURL PLAYS NICE WITH
OTHERSOTHERS

Or you can avoid the options madness and ordering, by just right-
clicking in Firefox (and Chrome) DevTools.

CURL PLAYS NICE WITHCURL PLAYS NICE WITH
OTHERSOTHERS

Or you can avoid the options madness and ordering, by just right-
clicking in Firefox (and Chrome) DevTools.

And select "Copy as cURL"

CURL PLAYS NICE WITHCURL PLAYS NICE WITH
OTHERSOTHERS

Or you can avoid the options madness and ordering, by just right-
clicking in Firefox (and Chrome) DevTools.

And select "Copy as cURL"

It works in BurpSuite too.

CURL PUTS THE C IN CURL.CURL PUTS THE C IN CURL.
> curl https://example.com \
 --header "Hello: World" -w '# %{http_code} -- %{time_total}'\
 --libcurl test.c -so/dev/null
200 -- 0,339792%
> cat test.c

TEST.CTEST.C
/********* Sample code generated by the curl command line tool **********
 * All curl_easy_setopt() options are documented at:
 * https://curl.haxx.se/libcurl/c/curl_easy_setopt.html
 **/
#include <curl/curl.h>

int main(int argc, char *argv[])
{
 CURLcode ret;
 CURL *hnd;
struct curl_slist *slist1;

 slist1 = NULL;
 slist1 = curl_slist_append(slist1, "Hello: World");

 hnd = curl_easy_init();
 curl_easy_setopt(hnd, CURLOPT_BUFFERSIZE, 102400L);
 curl_easy_setopt(hnd, CURLOPT_URL, "https://example.com");
 curl_easy_setopt(hnd, CURLOPT_NOPROGRESS, 1L);
 curl_easy_setopt(hnd, CURLOPT_HTTPHEADER, slist1);

YOUR OWN STRESS-TESTYOUR OWN STRESS-TEST
Because after all, they're just glorified (yet customisable)
loops with precise metrics
Let's roll our own apache-bench

#include <curl/curl.h>
#include <omp.h>
#define MAX_THREAD 64
#define LASERS 1000
#define URL "http://www.example.com"

int main(int argc, char *argv[]) {
int tid, i = 0;

 FILE *devnull;
 devnull = fopen("/dev/null", "w");
#pragma omp parallel private(i) num_threads(MAX_THREAD)

 {
#pragma omp for

for(i = 0; i < LASERS; ++i) {
 tid = omp_get_thread_num();

 CURLcode ret;
 CURL *hnd;

double total;
curl_off_t dl, rate;

Just removing some comments

#include <curl/curl.h>
#include <omp.h>
#define MAX_THREAD 64
#define LASERS 1000
#define URL "http://www.example.com"

int main(int argc, char *argv[]) {
int tid, i = 0;

 FILE *devnull;
 devnull = fopen("/dev/null", "w");
#pragma omp parallel private(i) num_threads(MAX_THREAD)

 {
#pragma omp for

for(i = 0; i < LASERS; ++i) {
 tid = omp_get_thread_num();

 CURLcode ret;
 CURL *hnd;

double total;
curl_off_t dl, rate;

Just removing some comments
And wrap some OpenMP magic around

#include <curl/curl.h>
#include <omp.h>
#define MAX_THREAD 64
#define LASERS 1000
#define URL "http://www.example.com"

int main(int argc, char *argv[]) {
int tid, i = 0;

 FILE *devnull;
 devnull = fopen("/dev/null", "w");
#pragma omp parallel private(i) num_threads(MAX_THREAD)

 {
#pragma omp for

for(i = 0; i < LASERS; ++i) {
 tid = omp_get_thread_num();

 CURLcode ret;
 CURL *hnd;

double total;
curl_off_t dl, rate;

Just removing some comments
And wrap some OpenMP magic around
Compile with: gcc mt_curl.c -fopenmp -lcurl

#include <curl/curl.h>
#include <omp.h>
#define MAX_THREAD 64
#define LASERS 1000
#define URL "http://www.example.com"

int main(int argc, char *argv[]) {
int tid, i = 0;

 FILE *devnull;
 devnull = fopen("/dev/null", "w");
#pragma omp parallel private(i) num_threads(MAX_THREAD)

 {
#pragma omp for

for(i = 0; i < LASERS; ++i) {
 tid = omp_get_thread_num();

 CURLcode ret;
 CURL *hnd;

double total;
curl_off_t dl, rate;

Just removing some comments
And wrap some OpenMP magic around
Compile with: gcc mt_curl.c -fopenmp -lcurl
Make sure the entire file is <42 LoC

#include <curl/curl.h>
#include <omp.h>
#define MAX_THREAD 64
#define LASERS 1000
#define URL "http://www.example.com"

int main(int argc, char *argv[]) {
int tid, i = 0;

 FILE *devnull;
 devnull = fopen("/dev/null", "w");
#pragma omp parallel private(i) num_threads(MAX_THREAD)

 {
#pragma omp for

for(i = 0; i < LASERS; ++i) {
 tid = omp_get_thread_num();

 CURLcode ret;
 CURL *hnd;

double total;
curl_off_t dl, rate;

DEMO ?DEMO ?

THANK YOUTHANK YOU
Everyone @ PTS for all the event
Dan Stanberg for all of the curling
Have a safe trip back home ♥

QUESTIONS ?QUESTIONS ?
���

