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Yoann "fuzzy" Lamouroux:

Reverse-engineer and security expert @dataimpact
(we're hiring ��� )
Former sysadmin
Trol ˆ Wdocumented opinions:

xoxopowo@twitter

legreffier@irc.freenode.net
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ABOUT LAST YEARABOUT LAST YEAR
5' is short (except when prod is down)
Now I have 20 (w00t)
I hope I deal better with time
(so I made a slide about dealing with time)
No more curling jokes (sorry)



TRIVIATRIVIA
Project started in 1996
Still maintained by Daniel Stenberg (@badger)
libcurl for about every language out there
The curl binary is in EVERY default install
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ALL OF THEMALL OF THEM
GNU/Linux, *BSD
MacOS
Windows 10 (recently)



SOME QUESTIONSSOME QUESTIONS
curl is old
curl is badly documented (?)
DevTools (Firefox, Chrome) is good
httpie is neater/prettier
python-requests



SOME ANSWERSSOME ANSWERS
Old means:

Good
Stable/reliable

DevTools are indeed good
httpie is a curl wrapper
python-requests is python (hang-on, brb)



DOCUMENTATIONDOCUMENTATION
You usually need curl in critical situations
No time to dig through 3k lines manual
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EVERYWHEREEVERYWHERE
DevTools won't get you far beyond the browser
Today's IT imply:
Reverse-proxies
Cloudy jokes
(aka. mai', aka. Kloug{Front,Flare,…})
… whatever cool kids use these days
And shiny boxes (aka. docker)
Tighter firewall policy (aka. no internets)
Just because you can run Chrome in docker,
… doesn't mean you should











BASICSBASICS

Display body on stdout.

>> curl https://www.example.com/



VERBOSEVERBOSE
 curl -v https://httpbin.org  > /dev/null
  * Rebuilt URL to: https://httpbin.org/
    % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                                  Dload  Upload   Total   Spent    Left  Speed
    0     0    0     0    0     0      0      0 --:--:-- --:--:-- --:--:--     0*   Trying 34.230.136.58...
  * TCP_NODELAY set
  * Connected to httpbin.org (34.230.136.58) port 443 (#0)
  * ALPN, offering h2
  * ALPN, offering http/1.1
  * successfully set certificate verify locations:
  *   CAfile: /etc/ssl/certs/ca-certificates.crt
    CApath: /etc/ssl/certs
  } [5 bytes data]
  * (304) (OUT), TLS handshake, Client hello (1):
  } [512 bytes data]
  * (304) (IN), TLS handshake, Server hello (2):
  { [89 bytes data]
  * TLSv1.2 (IN), TLS handshake, Certificate (11):
  { [4832 bytes data]
  * TLSv1.2 (IN), TLS handshake, Server key exchange (12):



PREFIXES:PREFIXES:
* : is information
> : protocol verbose FROM your computer (*)
< : protocol verbose TO your computer (*)
} : encrypted data FROM your computer
{ : encrypted data TO your computer
[xxx] : size (in bytes) of data transferred.

(ssl verbose with brackets is shown only when stdout is redirected)

(*) : doesn't mean it's not encrypted



MORE VERBOSEMORE VERBOSE
tcpdump might not be the answer (yet).

--trace and --trace-ascii for byte-per-byte analysis.

Use - or filename as an argument to write to stdout or to a file.



CUSTOM HEADERSCUSTOM HEADERS
-H (or --header) : to send custom headers
Add 'Key: Value' for each headers
-A foo: is a shortcut to -H 'User-Agent: foo'
-b foo=bar: is a shortcut to -H 'Cookie: foo=bar'

(Cookies are just headers your browser is used to save)



COOKIESCOOKIES
Not saved by default
Use -c to save cookies to a file (- to display on stdout)
Use -b to read from a file (it won't by default)



TIMER AFTER TIMETIMER AFTER TIME



Have-you ever seen this ?:

time curl http://example.org
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TRY :TRY :
curl --trace-time -v http://example.org

(Only works in verbose or trace mode)

Unless you do want to check the cpu-time / user-time of an HTTP
client request.

(you don't)



ANOTHER APPROACHANOTHER APPROACH
You can write many variables on output, with the format string

option including:

Request information:
http_code

http_version

Time and speed:
time_total

speed_download

Many more…
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Introducing -oOUTFILE, much prettier than ">/dev/null"
Also introducing the -s (--silent) option to inhibit the ugly
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FOR EXAMPLE:FOR EXAMPLE:

Introducing -oOUTFILE, much prettier than ">/dev/null"
Also introducing the -s (--silent) option to inhibit the ugly
progress metric

curl -w "http/%{http_version} %{http_code} -- %{time_total}" -s -o/dev/null http://example.com

We can also mention --stderr to control the error output
Use with - to direct it to stdout
Or whatever filename
>15 years using shells, still can't handle std flows ?
curl got your back.
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Need to edit /etc/hosts ?

curl -v --resolve www.example.com:443:1.2.3.4 https://www.example.com/



DID YOU EVER ?DID YOU EVER ?
…

Need to edit /etc/hosts ?

No need to play around with "Host" header

curl -v --resolve www.example.com:443:1.2.3.4 https://www.example.com/
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MEMORY ALLOCATIONMEMORY ALLOCATION
PROBLEMSPROBLEMS

No. Don't.

All the options I mentioned can be added to $HOME/.curlrc

Or write several of these, and recall them with -K filename, or
--config
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CURL PLAYS NICE WITHCURL PLAYS NICE WITH
OTHERSOTHERS

Or you can avoid the options madness and ordering, by just right-
clicking in Firefox (and Chrome) DevTools.

And select "Copy as cURL"

It works in BurpSuite too.



CURL PUTS THE C IN CURL.CURL PUTS THE C IN CURL.
> curl https://example.com \
            --header "Hello: World" -w '# %{http_code} -- %{time_total}'\
            --libcurl test.c  -so/dev/null
# 200 -- 0,339792%
> cat test.c



TEST.CTEST.C
/********* Sample code generated by the curl command line tool **********
 * All curl_easy_setopt() options are documented at:
 * https://curl.haxx.se/libcurl/c/curl_easy_setopt.html
 ************************************************************************/
#include <curl/curl.h>

int main(int argc, char *argv[])
{
  CURLcode ret;
  CURL *hnd;
struct curl_slist *slist1;

  slist1 = NULL;
  slist1 = curl_slist_append(slist1, "Hello: World");

  hnd = curl_easy_init();
  curl_easy_setopt(hnd, CURLOPT_BUFFERSIZE, 102400L);
  curl_easy_setopt(hnd, CURLOPT_URL, "https://example.com");
  curl_easy_setopt(hnd, CURLOPT_NOPROGRESS, 1L);
  curl_easy_setopt(hnd, CURLOPT_HTTPHEADER, slist1);



YOUR OWN STRESS-TESTYOUR OWN STRESS-TEST
Because after all, they're just glorified (yet customisable)
loops with precise metrics
Let's roll our own apache-bench



#include <curl/curl.h>
#include <omp.h>
#define MAX_THREAD 64
#define LASERS 1000
#define URL "http://www.example.com"

int main(int argc, char *argv[]) {
int tid, i = 0;

  FILE *devnull;
  devnull = fopen("/dev/null", "w");
#pragma omp parallel private(i) num_threads(MAX_THREAD)

  {
#pragma omp for

for(i = 0; i < LASERS; ++i) {
      tid = omp_get_thread_num();

      CURLcode ret;
      CURL *hnd;

double total;
curl_off_t dl, rate;



Just removing some comments
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      CURLcode ret;
      CURL *hnd;

double total;
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Just removing some comments
And wrap some OpenMP magic around
Compile with: gcc mt_curl.c -fopenmp -lcurl

#include <curl/curl.h>
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Just removing some comments
And wrap some OpenMP magic around
Compile with: gcc mt_curl.c -fopenmp -lcurl
Make sure the entire file is <42 LoC

#include <curl/curl.h>
#include <omp.h>
#define MAX_THREAD 64
#define LASERS 1000
#define URL "http://www.example.com"

int main(int argc, char *argv[]) {
int tid, i = 0;

  FILE *devnull;
  devnull = fopen("/dev/null", "w");
#pragma omp parallel private(i) num_threads(MAX_THREAD)

  {
#pragma omp for

for(i = 0; i < LASERS; ++i) {
      tid = omp_get_thread_num();

      CURLcode ret;
      CURL *hnd;

double total;
curl_off_t dl, rate;
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THANK YOUTHANK YOU
Everyone @ PTS for all the event
Dan Stanberg for all of the curling
Have a safe trip back home ♥
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