
Introduction to Osquery Workshop

2019 Pass the SALT Workshop

1

Overview

Introduction to Osquery

Osquery Basics

SQL Refresher

Osquery Configuration and Extensions

Fleet Management

Osquery and Elastic Stack

2

Introductory Workshop!

• This is an introductory workshop
• You probably won’t hear/see a

lot of new things if you have:
• Already used osquery;
• Followed SANS SEC599, etc.;

• If you are stuck, please
do not suffer in silence!

3

Workshop VM

• ais_workshop_xubuntu-18.04.2-desktop-amd64
• VMware Workstation, Player, or Fusion

• You can try VirtualBox too, but you are on your own with that… sorry!

• 8 GB RAM
• 30-50 GB disk space
• Keyboard layout: EN-US !!!

• Workshop VM (Ubuntu) user/pass: user / Workshop1234%
• Normally, it should not require password for login and sudo

4

About David

• Managing partner at Alzette Information Security (@AlzetteInfoSec)
• Network penetration testing, security architectures, security

monitoring, incident response
• Instructor at SANS Institute: FOR572
• BSides Luxembourg organizer https://bsideslux.lu
• Twitter: @DavidSzili
• E-mail: david.szili@alzetteinfosec.com
• Blog: http://jumpespjump.blogspot.com

5

https://twitter.com/AlzetteInfoSec
https://bsideslux.lu/
https://twitter.com/DavidSzili
mailto:david.szili@alzetteinfosec.com
http://jumpespjump.blogspot.com/

Introduction to Osquery

2019 Pass the SALT Workshop

6

About Osquery

What is osquery?
• Build for:

• Security
• Compliance
• Operations (DevOps)

• Everything in SQL!
• Exposes the operating system as

a relational database

• Developed by Facebook

Why osquery?
• (Free) Open Source Software
• Cross-platform

• One platform for monitoring
• Native packages for supported

operating systems

• Large-scale host monitoring or
threat hunting

• Growing Community

7

Osquery History

2014 OCT 29:
Announcement

2016 SEP 27 /
2016 Oct 4:

Osquery for Windows
(Trail of Bits)

2018 APR 25:
v3.2.4 - First stable

release in 3.0.0
series

2019 JUN 28:
osquery 4.0.0

released

8

Osquery flavours

Carbon Black LiveOps™ osql
• Osquery open source "soft-fork"

from Trail of Bits
• https://blog.trailofbits.com/2019/

04/18/announcing-the-community-
oriented-osquery-fork-osql/

• https://osql.io

9

https://blog.trailofbits.com/2019/04/18/announcing-the-community-oriented-osquery-fork-osql/
https://osql.io/

Osquery Basics

2019 Pass the SALT Workshop

10

Installation

• Built and signed by the osquery team
• Uses minimal number of run-time library

dependencies
• Binaries are a bit big (~20MB)

• Packages for:
• macOS
• Linux (Tarball, RPM, DEB)
• Windows (MSI)

• https://osquery.io/downloads
• Alternative downloads: darwin, apt,

yum, freebsd, chocolatey repositories

11

https://osquery.io/downloads

Getting Help

• Osquery Documentation
• https://osquery.readthedocs.io/en/stable/

• Osquery Slack
• https://osquery-slack.herokuapp.com/

• Osquery E-mail (for long-form questions)
• osquery@fb.com

• Osquery Github
• https://github.com/facebook/osquery/issues

12

https://osquery.readthedocs.io/en/stable/
https://osquery-slack.herokuapp.com/
mailto:osquery@fb.com
https://github.com/facebook/osquery/issues

Main Components

osqueryi
• Interactive query console
• Provides an SQL interface
• Completely standalone, no

communication with a daemon
• Does not require elevated

privileges (root/Administrator),
but not every table can be
queried in this case

osqueryd
• Host monitoring daemon
• Distributed, high-performance,

low-footprint
• Schedules queries to be

executed across an entire
infrastructure

• Aggregates query results and
generates logs

13

Osquery SQL and schema

• Superset of SQLite’s SQL
• SELECT only! (without using

extensions)
• You can still create run-time

tables/VIEWs

• "SQL As Understood By SQLite“:
• https://www.sqlite.org/lang.html

• Osquery schema documentation:
https://osquery.io/schema

• More than 200 tables in total!
• All platforms: ~40
• MacOS: ~160
• FreeBSD: ~40
• Linux: ~130
• Windows: ~73

14

osquery> .help

osquery> .tables

osquery> .schema

https://www.sqlite.org/lang.html
https://osquery.io/schema

Using osqueryi

• Used for:
1. Developing queries
2. Exploring a single system

• Side note:
• There is no connection between

interactive and daemon mode
• However, osqueryi and osqueryd are

the same binary!
• You can run osqueryi in daemon

mode and osqueryd interactively

• Linux/BSD/MacOS:
• $ {sudo} osqueryi

• Windows:
• Osqueryi is not in the path by default
• C:\ProgramData\osquery\osqueryi.exe

{in an Administrator console}

15

Osquery Shell and Schema Hands-On

2019 Pass the SALT Workshop

16

SQL Refresher

2019 Pass the SALT Workshop

17

SELECT (1)

• SELECT statement
• FROM: defines input data
• WHERE: boolean expression evaluated for

each row
• GROUP BY: Groups the result-set by one or

more columns
• HAVING: boolean expression evaluated once

for each group (can use aggregate functions)
• DISTINCT/ALL: no duplicate rows/all rows

displayed

• https://www.sqlite.org/lang_select.html

Operator Description

= Equal

<> Not equal

> Greater than

< Less than

>= Greater than or equal

<= Less than or equal

BETWEEN Between a certain range

LIKE Search for a pattern

IN Specify multiple values

18

https://www.sqlite.org/lang_select.html

SELECT (2)

• More on SELECT statement:
• ORDER BY: the list of expressions

in the ORDER BY determine the
order in which rows are returned

• ASC: smaller values returned first
• DESC: larger values returned first

• LIMIT: upper bound on the number
of rows returned

• OFFSET: the first X number of
rows are omitted from the results

• Compound SELECT Statements
• UNION ALL: returns all the rows

from two SELECTs
• UNION: like UNION ALL, but

duplicate rows are removed
• INTERSECT: returns the intersection

of the results of two SELECTs
• EXCEPT: Returns the subset of rows

returned by the left SELECT that are
not returned by the right-hand
SELECT

19

Aggregate Functions

Function Description

avg(X) Returns the average value of all non-NULL X within a group

count(X) Returns a count of the number of times that X is not NULL in a group

count(*) Returns the total number of rows in the group

group_concat(X) Returns a string which is the concatenation of all non-NULL values of X

group_concat(X,Y) group_concat(X) and Y is used as the separator between instances of X

max(X) Returns the maximum value of all values in the group

min(X) Returns the minimum non-NULL value of all values in the group

sum(X) Returns the (integer) sum of all non-NULL values in the group

total(X) Returns the (float) sum of all non-NULL values in the group

20

JOIN

• INNER JOIN (or just JOIN):
combines column values of two
tables based upon the join
predicate (ON keyword)

• USING: specifies a list of one or
more columns as a condition

• NATURAL INNER JOIN:
automatically tests for equality
between the values of every
column that exists in both tables

• LEFT OUTER JOIN (or just
LEFT JOIN): returns all values
from the left table, even if
there is no match with the
right table

• ON, USING, NATURAL: works the
same way as in INNER JOINs

• CROSS JOIN: matches every
row of the first table with
every row of the second table

21

Osquery Complex Query Example 22

osquery> SELECT datetime(logged_in_users.time,'unixepoch') AS
datetime,logged_in_users.type,logged_in_users.user,users.uid,logged_in_users.tty,logged_in_users.
pid,processes.name AS process_name,processes.path

...> FROM logged_in_users

...> LEFT JOIN processes USING(pid)

...> LEFT JOIN users ON users.username = logged_in_users.user;
+---------------------+-----------+----------+------+------+------+--------------+--------------+
| datetime | type | user | uid | tty | pid | process_name | path |
+---------------------+-----------+----------+------+------+------+--------------+--------------+
2019-03-26 21:35:00	boot_time	reboot		~	0		
2019-03-26 21:35:13	login	LOGIN		tty1	834	agetty	/sbin/agetty
2019-03-26 21:35:14	user	user	1000	tty7	1248	sh	/bin/dash
2019-03-26 21:35:39	runlevel	runlevel		~	53		
+---------------------+-----------+----------+------+------+------+--------------+--------------+

Osqueryi Hands-On

2019 Pass the SALT Workshop

23

Osquery Configuration and Extensions

2019 Pass the SALT Workshop

24

Using osqueryd

• Osqueryd is the host monitoring
daemon

• It aggregates query results over
time and generates logs

• Allows to:
1. Schedule queries
2. Record OS state changes,

including file and directory
changes, hardware events,
network events, etc.

• Configuration and query schedule

• Logging and reporting
• Query Packs

25

{
"osquery_info": {
"query": "SELECT * FROM osquery_info;",
"interval": 300,
"snapshot": true

}
}

Flags and Flagfile

• Osqueryi and osqueryd use
optional command line
(CLI) flags to:

• Control initialization
• Disable/enable features
• Select plugins

• List of flags:
https://osquery.readthedocs.io/
en/stable/installation/cli-flags/

• Flagfile: flags can be set
within environment variables
or via a "master" flag file

26

--tls_hostname=ws-vm
--tls_server_certs=C:\ProgramData\osquery\ws-vm.pem
--host_identifier=uuid
--enroll_tls_endpoint=/api/v1/osquery/enroll
--config_plugin=tls
--config_tls_endpoint=/api/v1/osquery/config
--config_tls_refresh=10
--disable_distributed=false
--distributed_plugin=tls
--distributed_interval=10
--distributed_tls_max_attempts=3
--distributed_tls_read_endpoint=/api/v1/osquery/distributed/read
--distributed_tls_write_endpoint=/api/v1/osquery/distributed/write
--logger_plugin=tls
--logger_tls_endpoint=/api/v1/osquery/log
--logger_tls_period=10
--enroll_secret_path=C:\ProgramData\osquery\osquery.secret

https://osquery.readthedocs.io/en/stable/installation/cli-flags/

Configuration

• Osquery "configuration" is read
from a config plugin

• Set to filesystem by default
• HTTP/TLS request using

the tls config plugin

• The response data must be in
JSON format

• Configuration details:
https://osquery.readthedocs.io/en/st
able/deployment/configuration

• Components in a configuration include
• Daemon options and feature settings
• Query Schedule: the set of SQL queries and

intervals
• File Change Monitoring: categories and paths of

monitored files and directories

• Filesystem config plugin default locations:
• Windows: C:\ProgramData\osquery\osquery.conf
• Linux: /etc/osquery/osquery.conf and

/etc/osquery/osquery.conf.d/
• MacOS: /var/osquery/osquery.conf and

/var/osquery/osquery.conf.d/

27

https://osquery.readthedocs.io/en/stable/deployment/configuration

Packs

• Configuration supports sets of
queries called packs

• Packs are distributed with
osquery and labeled based on
broad categories

• In an osquery configuration JSON
• Packs can be defined as a top-

level-key and consist of pack name
to pack content JSON data
structures

• Pack value may also be a string. In
case of the filesystem plugin,
these strings are considered paths.

28

{
"options": {

"enable_monitor": "true“
},
"packs": {

"osquery-monitoring": {
"queries": {...}

},
"incident-response": {

"queries": {...}
}

}
}

{
"options": {

"enable_monitor": "true“
},
"packs": {

"osquery-monitoring": "/usr/share/osquery/packs/osquery-monitoring.conf",
"incident-response": "/usr/share/osquery/packs/incident-response.conf“

}
}

Logging

• Osqueryd uses logger plugins:
• filesystem (default)
• tls
• syslog (for POSIX),
• windows_event_log (for Windows)
• kinesis
• firehose
• kafka_producer

• Log types: status and result logs

• Status logs:
• Generated by the Glog logging framework
• Logger plugins may intercept these

• Results logs: Results of scheduled
queries are logged to the "results log"

• Differential logs: Differential changes
between the last (most recent) query
execution and the current execution

• Snapshot logs: A snapshot is an 'exact
point in time' set of results, no
differentials

29

Eventing Framework

• Scheduled queries have limitations
• Volatile events like process

execution
• To overcome this, osquery has the

Eventing (pubsub) Framework
• Aggregating operating system

information asynchronously at
event time

• Storing related event details in the
osquery backing store

• Performing a lookup to report
stored rows query time

• Almost every pubsub-based table
ends with a _events or _changes

• Note that this reporting pipeline
is much more complicated!

1) Requires additional configuration
2) As events occur, the rows

returned by a query will
compound, so queries should
always include a time range

3) The buffered events will
eventually expire! Buffer is set
to 1 day by default

4) Eventing Framework will not
really work with osqueryi

30

Eventing Framework Example

File Integrity Monitoring
• Available for Linux and Darwin
• The list of files/directories to monitor is

defined in the osquery configuration
• Can use standard wildcards "*" or SQL-style

wildcards "%“ for the path definitions
• %: Match all files and folders for one level
• %%: Match all files and folders recursively

31

{
"schedule": {...},
"file_paths": {
"homes": [
"/root/.ssh/%%",
"/home/%/.ssh/%%“

],
"etc": [
"/etc/%%“

]
},
"exclude_paths": {
"homes": [
"/home/user/.ssh/%%“

]
}

}

Extensions

• Osquery supports proprietary
tables, config plugins, and
logger plugins

• Thrift-based extensions API
• Osqueryd may "autoload" these

extensions and monitor their
performance

• Trail of Bits extensions:
• https://github.com/osql/extensions

• CLI flags for extension auto-loading:

• Extensions.load file example
(osquery.ext is an executable):

• Manually Loading Extensions:

32

Source: https://osquery.readthedocs.io/en/stable/deployment/extensions/

--extensions_autoload=/etc/osquery/extensions.load
--extensions_timeout=3
--extensions_interval=3

/usr/lib/osquery/extensions/osquery.ext

osqueryi {--allow_unsafe} --extension
/path/to/extension.ext

https://github.com/osql/extensions
https://osquery.readthedocs.io/en/stable/deployment/extensions/

Osquery Configuration and Extensions Hands-On

2019 Pass the SALT Workshop

33

Fleet Management

2019 Pass the SALT Workshop

34

Fleet Management Options 35

• Kolide Fleet: https://kolide.com/fleet
• (Free) Open Source Software from Kolide: https://github.com/kolide/fleet
• Paid: Kolide Cloud (SaaS)

• Doorman: https://github.com/mwielgoszewski/doorman
• (Free) Open Source Software from Marcin Wielgoszewski

• STG: https://github.com/OktaSecurityLabs/sgt
• (Free) Open Source Software from Okta
• "Built Entirely on AWS"

• (osquery-fleet? : https://github.com/sandstorm/osquery-fleet)

https://kolide.com/fleet
https://github.com/kolide/fleet
https://github.com/mwielgoszewski/doorman
https://github.com/OktaSecurityLabs/sgt
https://github.com/sandstorm/osquery-fleet

About Kolide Fleet (and Kolide Launcher) 36

• Open Source Osquery Manager
• Compatible with every major platform
• Designed to work with Launcher

(Osqery deployment)
• Features:

• Query dynamic sets of hosts
• Run queries repeatedly with Packs
• Create labels populated with hosts

matching a query
• Export results

• fleetctl: provides scriptable, CLI based
access to osquery on your entire fleet

Kolide Fleet Installation and Configuration

1) Install and configure MySQL
2) Install Redis
3) Generate TLS certificate for Kolide Fleet server
4) Install Kolide Fleet (https://dl.kolide.co/bin/fleet_latest.zip)
5) Configure Kolide Fleet

a) Create fleet.config
b) Create MySQL database
c) Create fleet.service

6) Start Kolide Fleet

37

https://dl.kolide.co/bin/fleet_latest.zip

Kolide Fleet Interface and Deployment 38

Kolide Fleet Hands-On

2019 Pass the SALT Workshop

39

Osquery and Elastic Stack

2019 Pass the SALT Workshop

40

Filebeat Configuration 41

• Filebeat osquery module can be used
• JSON messages can be sent to:

• Elasticsearch
• Logstash

Logstash Pipeline Configuration

• Logstash file needs to be
placed to:

• /etc/logstash/conf.d/

• /etc/logstash/logstash.yml
has:

• config.reload.automatic: true
• config.reload.interval: 5s

42

Kibana Discovery 43

Osquery and Elastic Stack Hands-On

2019 Pass the SALT Workshop

44

Questions and Answers

2019 Pass the SALT Workshop

45

References

• Osquery Website and Osquery Schema
• https://osquery.io
• https://osquery.io/schema

• Osquery Docs
• https://osquery.readthedocs.io

• Kolide Website
• https://kolide.com

• Elastic Website
• https://www.elastic.co

46

https://osquery.io/
https://osquery.io/schema
https://osquery.readthedocs.io/
https://kolide.com/
https://www.elastic.co/

	Introduction to Osquery Workshop
	Overview
	Introductory Workshop!
	Workshop VM
	About David
	Introduction to Osquery
	About Osquery
	Osquery History
	Osquery flavours
	Osquery Basics
	Installation
	Getting Help
	Main Components
	Osquery SQL and schema
	Using osqueryi
	Osquery Shell and Schema Hands-On
	SQL Refresher
	SELECT (1)
	SELECT (2)
	Aggregate Functions
	JOIN
	Osquery Complex Query Example
	Osqueryi Hands-On
	Osquery Configuration and Extensions
	Using osqueryd
	Flags and Flagfile
	Configuration
	Packs
	Logging
	Eventing Framework
	Eventing Framework Example
	Extensions
	Osquery Configuration and Extensions Hands-On
	Fleet Management
	Fleet Management Options
	About Kolide Fleet (and Kolide Launcher)
	Kolide Fleet Installation and Configuration
	Kolide Fleet Interface and Deployment
	 Kolide Fleet Hands-On
	Osquery and Elastic Stack
	Filebeat Configuration
	Logstash Pipeline Configuration
	Kibana Discovery
	Osquery and Elastic Stack Hands-On
	Questions and Answers
	References

