
Tom CZAYKA
tczayka@quarkslab.com

Why are Frida and QBDI a Great Blend on Android?
Pass The Salt - June 2020



$ whoami

Tom CZAYKA (@bla5r)
Security engineer at Quarkslab

Mostly into reverse engineering and everything related to Android

https://twitter.com/bla5r


Table of Contents

Opening Android reverse engineering cookbook

Pouring a bit of Frida

Adding a QBDI zest

Mixing Frida and QBDI together



Dalvik/ART ecosystem

I When building an application, Java/Kotlin code is compiled into
Dalvik bytecode

I Dalvik bytecode is stored in Dalvik EXecutable file(s), embedded
in the final APK file

I Dalvik VM is responsible for executing Dalvik bytecode at runtime

I With ART, bytecode is compiled into machine code at installation
(AOT) then run natively

Reverse engineering

DEX files can be easily decompiled in either Java (jadx) or smali
(baksmali/apktool) representations. Doing so makes the reverse
engineering process much more easier.

https://github.com/skylot/jadx
https://github.com/JesusFreke/smali
https://ibotpeaches.github.io/Apktool/


Java Native Interface

libcrypto.so

encrypt()

decrypt()

sign()

JNI

Dalvik VM/ART

I Native development is still possible thanks to Java Native Interface

I Developers can call their own native functions from Java/Kotlin side

I JNI acts as a bridge between the Dalvik bytecode and the native
code

I Code lies in shared libraries (.so), loaded alongside Dalvik VM/ART

Reverse engineering

Understanding a native function is more complicated since it implies
reading through assembly code. Native decompilation is not as accurate
as the Dalvik bytecode one.



Java code

Let’s write a basic XOR function:

I Original source code

1 public static void inPlaceXor(byte[] key , byte[] buffer) {
2 for (int i = 0; i < buffer.length; i++) {
3 buffer[i] = (byte)(buffer[i] ^ key[i % key.length ]);
4 }
5 }

I Decompiled code (jadx)

1 public static void a(byte[] bArr , byte[] bArr2) {
2 for (int i2 = 0; i2 < bArr2.length; i2++) {
3 bArr2[i2] = (byte) (bArr2[i2] ^ bArr[i2 % bArr.length ]);
4 }
5 }

Significant differences

Logic remains the same, only function and variable names have been
changed (Proguard).

https://github.com/skylot/jadx


Native code

Let’s now rewrite this function in C code:

1 void in_place_xor(const char *key , unsigned int key_len ,
2 char *output , unsigned int output_len)
3 {
4 for (unsigned int i = 0; i < output_len; i++)
5 {
6 output[i] = output[i] ^ key[i % key_len ];
7 }
8 }



Graph view

I Without obfuscation I With obfuscation (OLLVM)

https://github.com/obfuscator-llvm/obfuscator


Native debugging

GDB
LLDB

Common anti-debugging techniques

I Checking TracerPid in /proc/self/status

I Child process attaching its parent

Developers usually take advantage of these techniques for preventing
their applications from being debugged.



Table of Contents

Opening Android reverse engineering cookbook

Pouring a bit of Frida

Adding a QBDI zest

Mixing Frida and QBDI together



Frida in a nutshell

I Created by @oleavr and @hsorbo

I https://github.com/frida/frida

I Dynamic Binary Instrumentation toolkit

I Lets you inject arbitrary code into a process

I Core code written in C

I Several bindings on top (JavaScript, Python, ...)

Talking of Android

Widely used by Android reverse engineers thanks to its great integration
and the convenience it brings.

https://twitter.com/oleavr
https://twitter.com/hsorbo
https://github.com/frida/frida


In practice

I Find the address of func of interest()
I Attach the function thanks to the Interceptor module

I Callback called before executing the function
I Callback called after executing the function

I Print arguments and return value

1 var addr = Module.findExportByName("libjuicy.so",
2 "func_of_interest");
3 Interceptor.attach(addr , {
4 onEnter: function (args) {
5 console.log("Entering func_of_interest(" +
6 args [0]. readCString () + ")");
7 },
8 onLeave: function (retval) {
9 console.log("Return value: " + retval + "...");

10 }
11 });

Limitations

We’re here at the function level hence we can’t really figure out what’s
going on inside.

https://frida.re/docs/javascript-api/#interceptor


Table of Contents

Opening Android reverse engineering cookbook

Pouring a bit of Frida

Adding a QBDI zest

Mixing Frida and QBDI together



What’s QBDI?

I Initially developed by Cédric Tessier and Charles Hubain (Quarkslab)

I https://github.com/QBDI/QBDI

I LLVM-based Dynamic Binary Instrumentation framework

I Designed to work on a lower layer (basic block/instruction scale)

I Provides C/C++ APIs

I Frida integration

https://twitter.com/nezetic
https://twitter.com/haxelion
https://github.com/QBDI/QBDI
https://llvm.org


Overall design
Instrumented ranges

libc.so libjuicy.so

Instrumented

0xbeef

0xdead

libart.solibcrypto.so

Instrumented

0x0

0x31337

I The QBDI engine will solely consider precise parts of the code

I Those parts users are interested in have to be defined as
intrumented ranges

I A range can include the whole program’s address space, an entire
module or only a specific part of it



Overall design
Callbacks

I A callback is a user defined function that is called whenever coming
across special conditions:
I Before/after executing each instruction
I Basic block discovery
I Transfer execution to an uninstrumented part

I Users can register some specific callbacks depending on their needs

Code outside of instrumented ranges isn’t considered

Callbacks won’t be called if the current program counter points to an
address which isn’t included in a known range.



A demo is worth a thousand words

Initialisation

I Instanciate a QBDI VM

I Allocate the corresponding virtual stack

Analysis refinement

I Define instrumented ranges

I Set up callbacks

Function running

I Prepare registers and virtual stack with arguments according to the
ABI

I Execute the target function through the QBDI context

I Retrieve the return value



Table of Contents

Opening Android reverse engineering cookbook

Pouring a bit of Frida

Adding a QBDI zest

Mixing Frida and QBDI together



Real-world setting

Whatsapp 2.20.157
com.whatsapp

Scenario

I We have noticed an interesting library called libwhatsapp.so

I We would like to understand what this library is doing

I Let’s dive in by looking into JNI OnLoad()

Note

JNI OnLoad() is responsible for initialisation. This function is always
called right after the library loading.

https://play.google.com/store/apps/details?id=com.whatsapp
https://docs.oracle.com/javase/8/docs/technotes/guides/jni/spec/invocation.html#JNJI_OnLoad


Instruction tracing
Approach

Goal: recording every single executed instruction could allow us to get a
thorough understanding of what this function is actually doing.

Idea: instead of letting the function run as usual, let’s execute it in an
instrumented context.

How to set it up?

I Replace the genuine implementation of JNI OnLoad() thanks to
Frida’s Interceptor.replace()

I The brand-new implementation is responsible for
I initialising QBDI
I defining the whole libwhatsapp.so’s address space as an

instrumented range
I declaring a callback which will be called before each instruction
I synchronising the current CPU context with the QBDI one
I executing the real JNI OnLoad() through QBDI

I Forward the return value to properly resume the normal execution

https://frida.re/docs/javascript-api/#interceptor
https://qbdi.readthedocs.io/en/stable/frida_bindings.html#PREINST


Instruction tracing
Outcomes

0x890a7edc imul dword ptr [esp + 4]
0x890a7ee0 mov eax , edx
0x890a7ee2 shr eax , 31
0x890a7ee5 sar edx , 6
0x890a7ee8 add edx , eax
0x890a7eea mov dword ptr [ecx + 4], edx
0x890a7eed xor eax , eax
0x890a7eef mov ecx , dword ptr [esi]
0x890a7ef1 cmp ecx , dword ptr [esp + 12]

Useful but...

Knowing what instructions have been executed is valuable but not really
convenient as it is.

What about integrating this information in our favourite
disassembler like IDA Pro or Ghidra?

https://www.hex-rays.com/products/ida/
https://ghidra-sre.org/


Code coverage generation

I Various plugins deal with code
coverage such as Lighthouse
or Dragondance

I Both require drcov files to
work

I These files contain information
about

I Process’ memory layout

I Executed basic blocks

I Placing a QBDI callback
which is called whenever a
new basic block is discovered
allows us to generate this file
on our own

https://github.com/gaasedelen/lighthouse
https://github.com/0ffffffffh/dragondance
https://www.ayrx.me/drcov-file-format
https://qbdi.readthedocs.io/en/stable/frida_bindings.html#BASIC_BLOCK_NEW


Stay tuned!

A follow-up blogpost coming soon on Quarkslab’s blog:

https://blog.quarkslab.com

https://blog.quarkslab.com


Thanks for listening!

Questions?


	Opening Android reverse engineering cookbook
	Pouring a bit of Frida
	Adding a QBDI zest
	Mixing Frida and QBDI together

