

Pique curiosity, not diabetic fingers

Axelle Apvrille (Fortinet) Travis Goodspeed

July 2020

(

Hello!

Axelle Apvrille Principal Security Researcher at Fortinet, @cryptax Mobile malware, IoT, Ph0wn CTF

Travis Goodspeed Digital watchmaker and Studebaker enthusiast, @travisgoodspeed GoodFET, GoodWatch, PoC∥GTFO

Flash Glucose Monitoring systems

<u>Diabetes Technol Ther</u>. 2009 Jun; 11(Suppl 1): S-11–S-16. doi: <u>10.1089/dia.2009.0002</u> PMCID: PMC2903977 PMID: <u>19469670</u>

A Tale of Two Compartments: Interstitial Versus Blood Glucose Monitoring

Eda Cengiz, M.D.^{III} and <u>William V. Tamborlane</u>, M.D.

Ocryptax testing the sensor!

Screenshot from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2903977/

Sensor life cycle Assemble pack

- 10 B

N NE T JI 31% D 16:07

Activate it (60 min)

Apply sensor

💷 🍋 🕾

XPIRATION CAPTEUR DANS : 11 JOURS

Use it

Expires after 14 days

Wanna hack? Working around limitations

- 1 Max life time
- 2 Warm up time
- 3 Geographical location

Disclaimer

Those hacks work on the technical side

They haven't been tested from a medical point of view, and we strongly discourage diabetic users to play with them

but an attacker could...

Resurrection Demo

🖾 🚀 😔 \cdots	* 🔃 🌂 🛸 📶 100% 🛢 14:50	< 🗳 🖉		∦ 🕅 🖎 🖘.⊪ 100% 🖻	14:19	💅 🖬 😔 -	·· *N	🔌 🗟 📶 100% 🛢 14:50
≡ G	oodV :		GoodV				GoodV	
INFO:	0004ae10cf0300a007e0f307	Succes	sfully er: 0002b308e:	ased tag 1 :))	ļ	INFO:	0004e108b	30200a007e0f307
SERIAL:	e007a00003cf10ae				(-	SERIAL:	e007a0000	2b308e1
VARIANT:	GCM					VARIANT:	GCM	
BLOCKLEN:	8	<			Ç	BLOCKLEN	1: 8	
PAGE :	0					PAGE :	0	
BESET VEC	da 50	-				DIAGLOUR RESET VE	C: UNLOCKED	
STAGE:	Expired	-			<u>`</u> Т	STAGE:	To Activa	te
INDICATOR	:00				Ϋ́	INDICATO	DR:00	
STATE :	00df0000010000					STATE :	00df00000	1640f
WEAR :	21530 minutes					WEAR :	0 minutes	
REGION:	France	<			Ý	REGION:	France	
Trend idx	: 9	_				Trend id	lx:0	
E	XPORT TO CLIPBOARD				3		EXPORT TO CI	.IPBOARD
	Expired		Reset t	the sensor		"To A	Activate''	stage now
	Pique curiosity, not diabetic f	ingers - F	ass the SA	LT 2020 - Apvrille,	Goods	peed		8/31

How does that work?

Let's speed through previous work More information: watch our talk at BlackAlps 2019

Tear down the sensor

JTAG

NFC antenna

Blocks exposed by NFC

Sponge wet with hot sugar to simulate glucose

Tag UID : E007A00003183AD2 Tag Info: Texas Instrument France

Valid ISO15693 Tag Found - Quiting Search

 Reading memory from tag UID=E007A00003183AD2

 Tag Info: Texas Instrument France

 Block 00
 F4 18 B0 32 03 01 02 08
 ...2....

 Block 01
 00 00 00 00 00 00 00 00

 Block 02
 00 00 00 00 00 00 00 00

 Block 03
 F9 2B 0E 08 1F 00 C0 96
 .+.....

 Block 04
 AB 80 1E 00 C0 92 AB 80

 Block 05
 1F 00 C0 96 AB 80 1F 00

Working out memory layout

Section	Begin	End
Activation blocks	F860	F877
Glucose records	F878	F99F
Sensor region	F9A0	F9B7
Commands	F9B8	FFCF
Footer	FFD0	FFF7

F878	Block		θA	BA			
F880	Block	04					
F888						Tre	

Block CRC Trend index History index

F8D8									
F8E0									
F8E8									
F8F0									

History records

F978 Block 23 F908 Block 24 F908 Block 25 F908 Block 26 F998 Block 27 00 00 00 04 **44 00** 00 00 Last history record Wear time

A3 Raw Read

Dump firmware

You're up to level!

Now, let's have a close look to E0

E0 command

- E0 is disabled, but the code is included in the firmware
- It resets the sensor
- Disassembly in tech report
- Activity blocks have two important bytes:
 - 1 Stage of Life. 1 to activate, 3 operational, 5 expired...
 - 2 Activity switch. 0 inactive, 1 active
- Each section is protected by a CRC

		FUNCTION		
		***************************************		*****
	Indefined ros	calledby e0()		
undefined	B12 loc1	(RETLEN)		
undefined?	R15-2	addr		38EE[1] - 5266(W)
undefined	B14 10-1	len		¥866(1) 5274(W)
	ros calledby a	a	VREE141-	1(72(*) 5000(*)
	in a concernent _ c			EIN 5114-5246(c)
				fram e0:fbc2(c)
5256 0a 12	PUSH.W	R10		
5258 b2 40 80	MOV.W	#0x5a90.5M0TCTL		
5e 5c 01				
525e 5a 42 03	08 MOV.B	SRF13MINT H, R10		
5262 c2 43 03	08 MOV.B	#0.6PF13HINT H		
5266 3f 40 7a	f8 MOV.W	#0xf87a,addr		
526a 7e 40 93	00 MOV.B	#0x93,R14		
	zeroize trend LA8_526e	record table and history table:	we zeroize XREF[1]:	0x93 5276(j)
526e 8f 43 00	00 MOV.W	#0.0x0(addr)=>trend_index		
5272 2f 53	INCD.W	addr		
5274 7e 53	ADD . B	#-1,len		
5276 fb 23	JNE	L48_526e		
5278 e2 b2 c3	1c BIT.B	#4, &DAT_1cc3		
527c 16 28	JNC	LA8_52aa		
527e 3f 40 66	18 MOV.W	#0x1866,addr		
5282 7e 40 09	00 MOV.B	#0x9,len		
	zeroize 0x09 v LAB 5286	ords after the expiration indic	ator in the XREF[1]:	head 528e(1)
5286 8f 43 00	NOV.W	#0.0x0(addr)=>0AT f865		
528a 2f 53	TNCD W	addr		

L48_5286 #0.6fram expirationindicator

MOV.W #0 add

5200 c2 42 6

Pique curiosity, not diabetic fingers - Pass the SALT 2020 - Apvrille, Goodspeed

Start a new life!

We (nearly) know how to reset a sensor

- Set Stage of Life byte
- Set Activity Switch byte
- Clean up the Glucose records section: this also resets the wear time count

But we need to compute correct CRCs for section we patch!

Computing a CRC shouldn't be difficult, right?

Which one is it? ...

Algorithm	Result	Check	Poly	Init	RefIn	Ref0ut	XorOut
CRC-16/CCITT-FALSE	0x29B1	0x29B1	0×1021	0xFFFF	false	false	0×0000
CRC-16/ARC	0×BB3D	0×BB3D	0×8005	0×0000	true	true	0×0000
CRC-16/AUG-CCITT	0xE5CC	0xE5CC	0×1021	0×1D0F	false	false	0×0000
CRC-16/BUYPASS	0×FEE8	0×FEE8	0×8005	0×0000	false	false	0×0000
CRC-16/CDMA2000	0x4C06	0x4C06	0xC867	0xFFFF	false	false	0x0000
CRC-16/DDS-110	0x9ECF	0x9ECF	0x8005	0×800D	false	false	0x0000
CRC-16/DECT-R	0x007E	0x007E	0x0589	0x0000	false	false	0x0001
CRC-16/DECT-X	0x007F	0x007F	0x0589	0x0000	false	false	0x0000
CRC-16/DNP	0xEA82	0xEA82	0x3D65	0x0000	true	true	0xFFFF
CRC-16/EN-13757	0xC2B7	0xC2B7	0x3D65	0x0000	false	false	0xFFFF
CRC-16/GENIBUS	0xD64E	0xD64E	0×1021	0xFFFF	false	false	0xFFFF
CRC-16/MAXIM	0x44C2	0x44C2	0×8005	0×0000	true	true	0xFFFF
CRC-16/MCRF4XX	0x6F91	0x6F91	0×1021	0xFFFF	true	true	0×0000
CRC-16/RIELLO	0x63D0	0x63D0	0×1021	0xB2AA	true	true	0×0000
CRC-16/T10-DIF	0×D0DB	0×D0DB	0x8BB7	0×0000	false	false	0×0000
CRC-16/TELEDISK	0x0FB3	0x0FB3	0xA097	0×0000	false	false	0×0000
CRC-16/TMS37157	0x26B1	0x26B1	0x1021	0x89EC	true	true	0×0000
CRC-16/USB	0xB4C8	0xB4C8	0x8005	0xFFFF	true	true	0xFFFF
CRC-A	0xBF05	0xBF05	0x1021	0xC6C6	true	true	0x0000
CRC-16/KERMIT	0x2189	0x2189	0x1021	0x0000	true	true	0x0000
CRC-16/MODBUS	0x4B37	0x4B37	0x8005	0xFFFF	true	true	0x0000
CRC-16/X-25	0x906E	0×906E	0x1021	0xFFFF	true	true	0xFFFF

Tried them all, none matched!

To be honest, several months past before we found the solution...

Sol<u>ution</u>

Kill a sensor

We know how to *resurrect* a sensor. An attacker may want to do the opposite: **kill** a sensor.

Corrupt the memory of the sensor. Quick, easy and dirty.
 Or set Stage of Life to 5 (or 6).

NEXT

Corrupt memory

Wanna hack? Working around limitationss

- 1 Max life time: HACKED
- 2 Warm up time
- 3 Geographical location

Demo: Set up

[*] Hack PatchTimeValues: we set warmup=5 weartime=6912000 minutes

Show time

Backup slides ;P

중 🖋 🖾 ··· 🛛 🖇 🕾 🚛 100% 🖻 14:19	🖬 🖋 🗢 ··· 🔺 🕅 🔌 📚 ₁≬ 100% 🕯 14:32	🖬 🖋 🗢 ··· 😽 🕅 🔌 📚 ୷ 100% 🖻 14:31
\equiv FreeStyle LibreLink :	\equiv FreeStyle LibreLink :	← Mon taux de glucose
	Prêt à scanner	3433
	DERNIÈRES 24 HEURES durée dans la cible dernier scan moyenne LO	500 mg/dL
Capteur prêt à : 14:20 (2 min restant)	mg/dl. 350 300 250 200 150 50 lun. mar. 15:00 18:00 21:00 00:00 03:00 06:00 09:00 12:00	mg/d. 50 450 30 250 250 150 100 50 09:00 12:00
	EXPIRATION CAPTEUR DANS : 4800 JOURS	AJOUTER COMMENTAIRE
Warm up time modified	Wear limit hacked to	We can hack glucose
to 2 minutes	4800 days	value with a Frida hook
Pique curiosity, not diabetic fi	ngers - Pass the SALT 2020 - Apvrille, Good	speed 25/3

Wanna hack? Working around limitations

- 1 Max life time: **HACKED**
- 2 Warm up time: HACKED
- **3 Geographical location**

Sensor region

- Sensor region is located in the sensor section
- Flip region indicator
- Recompute CRC of section
- Activate sensor

Code	Geographic region
01	Europe/UK
02	US 10-day sensors
08	Israel

Activation section

Glucose section

Region

Commands section

Footer section

Close up on the sensor section in memory

Wanna hack? Working around limitations

- 1 Max life time: HACKED
- 2 Warm up time: HACKED
- 3 Geographical location: HACKED

Requires NFC proximity + secret password

Conclusion

We bypass all limitations although, globally, the design is good / has been done with care

Mitigation

For an attacker, it is far easier to:

- Infect the victim's phone with a ransomware
- Or create a fake diabetes app

The weakest link is the smartphone

Debate: can we secure smartphones for critical uses?

References

- Security analysis of a Connected Glucose Sensor, Technical report
- GoodV Android application
- Readdump.py
- NFC exploitation with RF430RFL152 and 'TAL152, PoC GTFO, 20:03
- Presentation at BlackAlps 2019

Contact us: @cryptax @travisgoodspeed

Thanks to: Anonymous diabetic contacts :) and @aamirlakhani @PagetPhil @TuxDePoinsisse @aurelsec @passthesaltcon

