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Whoami

 Eloi Benoist-Vanderbeken

 @elvanderb on twitter

 Working for Synacktiv

 Offensive security company
 90 ninjas
 3 departments: pentest, reverse engineering, development
 Pass The Salt sponsor!

 Reverse engineering technical leader

 30 reversers
 Focus on low level dev, reverse, vulnerability research/exploitation
 If there is software in it, we can own it :)
 We are hiring!
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JailBreak detection

 iOS

 Closed operating system
 No easy way to get root
 JailBreaks bypass iOS security to get (almost) full access

 JailBreak detection

 Used by banking applications and games
 To make sure that the environment is “safe”…
 …or to block cheats/cracks

 Security researchers need to 

 Assess / reverse protected applications
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iOS specificities

 Signature
 All the code must be signed by Apple (enforced by the system)
 All the data is also signed (enforced by the App Store)

 Memory protection

 W^X
 Only WebContent process can use JiT pages

 No side loading

 “Apps may not […] download, install, or execute code which introduces or 
changes features or functionality of the app”

 Public API

 “Apps may only use public APIs”
 Theoretically enforced by the App Store review process
 Actually only used to block malicious tracking methods or deprecated/buggys 

APIs
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Frida

 https://frida.re

 “Dynamic instrumentation toolkit for developers, reverse-engineers, 
and security researchers”

 Allows you to inject JavaScript to instrument any process

 iOS / Android / Windows / macOS / Linux / QNX...

 Lots of features

 Lots of bindings (.NET, Python, Node.js, Swift…)

 Low level C API

 Well known by Pass The Salt aficionados

 PTS 2020 - Why are Frida and QBDI a Great Blend on Android?
 PTS 2018 - Radare2 + Frida: Better Together
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Debugging an iOS app

 Without a JailBreak
 With ptrace (lldb / frida) → app needs the get-task-allow entitlement

 By injecting code (frida) → app needs to be repackaged

And you can only do data only instrumentation
 In both case, you need to resign the application…

 … but it has a lot of side effect

Different Team ID

File are modified

 With a JailBreak
 No entitlements are required

 Frida is able to attach to any process

Except system ones on post A12 iPhones because of PPL
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The target

 A banking app

 Immediately crash when launched on a jailbroken device
 Exception Type:  EXC_BAD_ACCESS (SIGSEGV)

 Exception Subtype: KERN_INVALID_ADDRESS at 0x0000000000000200

 Executable is quite large
 31MB

 Nothing special at first sight
 Methods name are not obfuscated

 Strings are in cleartext

 We tried a few scripts¹
 But without luck

1: most notably this one: https://blog.spacepatroldelta.com/a?ID=01600-8a224e7e-6ceb-4e65-88b9-4545d6523275

https://blog.spacepatroldelta.com/a?ID=01600-8a224e7e-6ceb-4e65-88b9-4545d6523275
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Around the crash…
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Around the crash…
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Around the crash…
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Around the crash…
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Around the crash…
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Syscalls

 Syscalls are directly executed
 400+ syscalls

 Hooking APIs is not sufficient

 Not very compliant with the “Apps may only use public APIs” policy…

 Strings are decrypted on the fly
 Integrity checks

 Impossible to just find and replace blacklisted paths

 What we would like to do
 Intercept all the syscall with Frida

 Manipulate the arguments

 Replace the return value
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Interception with Frida

 Classically used to intercept function arguments or return values

 Or to completely replace its implementation

Examples are from the doc: https://frida.re/docs/javascript-api/

https://frida.re/docs/javascript-api/
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Interception with Frida

 But can also be used to intercept arbitrary instructions

 Useful to dump process state in the middle of a 
function…

 But not magic nor perfect
 May have to patch multiple instructions to redirect execution flow

 May trash registers (an issue is open)
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Using breakpoints

 Frida also allows to intercept exceptions!

 Replace all the syscall with breakpoints
 Ensure that we only patch one instruction

 Catch the exception to intercept all the syscalls

 Modify the context to emulate them
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Patch all the syscalls
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The nasty crash…

 After a few tries we implemented several syscalls

 In parallel we found that normal function are also used

 Process always crashed just after the checks
 Invalid deref, exit(0), objc_msgSend with invalid pointers etc.

 Easy to find the check 

 But then the process started to crash…

 … this time with trashed PC / LR
 No easy way to find the underlying test
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Stalker

 Frida has a Dynamic Binary Instrumentation engine
 Stalker

 Can be used to log all the basic blocks executed

 Idea
 Run the app until the last successfully bypassed check

 Trace all the basic blocks

 Wait for the program to crash

 Make sure to use sync method
 Frida loses the buffered messages when the app crashes

 This quickly gave us the culprit
 An API that we weren’t hooking yet
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Stalker
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Protections

 Try to find JailBreak files
 open, utimes, stat, pathconf, stat64, fopen

 Both syscalls and functions

 Try to block/detect debuggers
 ptrace(PT_DENY_ATTACH);

 Check if the parent pid is launchd
 getppid() == 1

 Try to detect if the rootfs is writable
 getfsstat64, statvfs
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A generic API

 A generic interface to hook both functions and syscalls
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A generic API

 Handle special cases
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Other techniques

 Try to load an invalid signature
 fcntl(F_ADDSIGS);

 Check if some JailBreak libraries are loaded in your process
 /usr/lib/substitute-inserter.dylib for example

 Can use dlopen / memory scanning / dyld internal structures etc.

 Check if your process is instrumented
 Check code integrity

CRC, derive constants from the code, check API entries, etc.
 Time code execution

 Try to detect Frida

 Check signature state
 Via csops(CS_OPS_MARKKILL)

 Crash later
 Use a global context

 Put the crash long after the detection

 Complicate the backtracing
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Future of iOS instrumentation

 Harder and harder to attack iOS devices
 Pointer signature (PAC)

Per process and per Team ID keys

A lot of kernel data pointers are now signed
 API hardening

Impossible to manipulate a system process even with its task port
 Sandboxing

More and more kernel API are sandboxed
 ioctl, fcntl, syscalls, necp etc.

More and more services are sandboxed
 Isolation

Kernel allocations segregation

 Apple not only kills bugs but also exploit techniques

 JailBreaks are more and more precious



  

32 / 32

PPL

 All the memory management is done in a special CPU state
 Impossible to patch the page tables with an arbitrary kernel write

 PPL also protect userland services
 PPL knows all the system services

Hashes are hardcoded in its data
 Forbid to inject third party executable code in a system process

 Could be deployed for all the processes
 If they don’t have a special entitlement

 Still possible to manipulate the process…
 With data only manipulation

 Or by using hardware breakpoints

 …but not that easy nor handy
 Needs to sign pointers with the distant process key

 Not an infinite number of hardware breakpoint

 All the tool will have to be recoded
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