

2 / 32

Whoami

 Eloi Benoist-Vanderbeken

 @elvanderb on twitter

 Working for Synacktiv

 Offensive security company
 90 ninjas
 3 departments: pentest, reverse engineering, development
 Pass The Salt sponsor!

 Reverse engineering technical leader

 30 reversers
 Focus on low level dev, reverse, vulnerability research/exploitation
 If there is software in it, we can own it :)
 We are hiring!

4 / 32

JailBreak detection

 iOS

 Closed operating system
 No easy way to get root
 JailBreaks bypass iOS security to get (almost) full access

 JailBreak detection

 Used by banking applications and games
 To make sure that the environment is “safe”…
 …or to block cheats/cracks

 Security researchers need to

 Assess / reverse protected applications

5 / 32

iOS specificities

 Signature
 All the code must be signed by Apple (enforced by the system)
 All the data is also signed (enforced by the App Store)

 Memory protection

 W^X
 Only WebContent process can use JiT pages

 No side loading

 “Apps may not […] download, install, or execute code which introduces or
changes features or functionality of the app”

 Public API

 “Apps may only use public APIs”
 Theoretically enforced by the App Store review process
 Actually only used to block malicious tracking methods or deprecated/buggys

APIs

6 / 32

Frida

 https://frida.re

 “Dynamic instrumentation toolkit for developers, reverse-engineers,
and security researchers”

 Allows you to inject JavaScript to instrument any process

 iOS / Android / Windows / macOS / Linux / QNX...

 Lots of features

 Lots of bindings (.NET, Python, Node.js, Swift…)

 Low level C API

 Well known by Pass The Salt aficionados

 PTS 2020 - Why are Frida and QBDI a Great Blend on Android?
 PTS 2018 - Radare2 + Frida: Better Together

7 / 32

Debugging an iOS app

 Without a JailBreak
 With ptrace (lldb / frida) → app needs the get-task-allow entitlement

 By injecting code (frida) → app needs to be repackaged

And you can only do data only instrumentation
 In both case, you need to resign the application…

 … but it has a lot of side effect

Different Team ID

File are modified

 With a JailBreak
 No entitlements are required

 Frida is able to attach to any process

Except system ones on post A12 iPhones because of PPL

9 / 32

The target

 A banking app

 Immediately crash when launched on a jailbroken device
 Exception Type: EXC_BAD_ACCESS (SIGSEGV)

 Exception Subtype: KERN_INVALID_ADDRESS at 0x0000000000000200

 Executable is quite large
 31MB

 Nothing special at first sight
 Methods name are not obfuscated

 Strings are in cleartext

 We tried a few scripts¹
 But without luck

1: most notably this one: https://blog.spacepatroldelta.com/a?ID=01600-8a224e7e-6ceb-4e65-88b9-4545d6523275

https://blog.spacepatroldelta.com/a?ID=01600-8a224e7e-6ceb-4e65-88b9-4545d6523275

10 / 32

Around the crash…

11 / 32

Around the crash…

12 / 32

Around the crash…

13 / 32

Around the crash…

14 / 32

Around the crash…

15 / 32

Syscalls

 Syscalls are directly executed
 400+ syscalls

 Hooking APIs is not sufficient

 Not very compliant with the “Apps may only use public APIs” policy…

 Strings are decrypted on the fly
 Integrity checks

 Impossible to just find and replace blacklisted paths

 What we would like to do
 Intercept all the syscall with Frida

 Manipulate the arguments

 Replace the return value

16 / 32

Interception with Frida

 Classically used to intercept function arguments or return values

 Or to completely replace its implementation

Examples are from the doc: https://frida.re/docs/javascript-api/

https://frida.re/docs/javascript-api/

17 / 32

Interception with Frida

 But can also be used to intercept arbitrary instructions

 Useful to dump process state in the middle of a
function…

 But not magic nor perfect
 May have to patch multiple instructions to redirect execution flow

 May trash registers (an issue is open)

18 / 32

Using breakpoints

 Frida also allows to intercept exceptions!

 Replace all the syscall with breakpoints
 Ensure that we only patch one instruction

 Catch the exception to intercept all the syscalls

 Modify the context to emulate them

19 / 32

Patch all the syscalls

20 / 32

The nasty crash…

 After a few tries we implemented several syscalls

 In parallel we found that normal function are also used

 Process always crashed just after the checks
 Invalid deref, exit(0), objc_msgSend with invalid pointers etc.

 Easy to find the check

 But then the process started to crash…

 … this time with trashed PC / LR
 No easy way to find the underlying test

21 / 32

Stalker

 Frida has a Dynamic Binary Instrumentation engine
 Stalker

 Can be used to log all the basic blocks executed

 Idea
 Run the app until the last successfully bypassed check

 Trace all the basic blocks

 Wait for the program to crash

 Make sure to use sync method
 Frida loses the buffered messages when the app crashes

 This quickly gave us the culprit
 An API that we weren’t hooking yet

22 / 32

Stalker

23 / 32

Protections

 Try to find JailBreak files
 open, utimes, stat, pathconf, stat64, fopen

 Both syscalls and functions

 Try to block/detect debuggers
 ptrace(PT_DENY_ATTACH);

 Check if the parent pid is launchd
 getppid() == 1

 Try to detect if the rootfs is writable
 getfsstat64, statvfs

25 / 32

A generic API

 A generic interface to hook both functions and syscalls

26 / 32

A generic API

 Handle special cases

28 / 32

Other techniques

 Try to load an invalid signature
 fcntl(F_ADDSIGS);

 Check if some JailBreak libraries are loaded in your process
 /usr/lib/substitute-inserter.dylib for example

 Can use dlopen / memory scanning / dyld internal structures etc.

 Check if your process is instrumented
 Check code integrity

CRC, derive constants from the code, check API entries, etc.
 Time code execution

 Try to detect Frida

 Check signature state
 Via csops(CS_OPS_MARKKILL)

 Crash later
 Use a global context

 Put the crash long after the detection

 Complicate the backtracing

31 / 32

Future of iOS instrumentation

 Harder and harder to attack iOS devices
 Pointer signature (PAC)

Per process and per Team ID keys

A lot of kernel data pointers are now signed
 API hardening

Impossible to manipulate a system process even with its task port
 Sandboxing

More and more kernel API are sandboxed
 ioctl, fcntl, syscalls, necp etc.

More and more services are sandboxed
 Isolation

Kernel allocations segregation

 Apple not only kills bugs but also exploit techniques

 JailBreaks are more and more precious

32 / 32

PPL

 All the memory management is done in a special CPU state
 Impossible to patch the page tables with an arbitrary kernel write

 PPL also protect userland services
 PPL knows all the system services

Hashes are hardcoded in its data
 Forbid to inject third party executable code in a system process

 Could be deployed for all the processes
 If they don’t have a special entitlement

 Still possible to manipulate the process…
 With data only manipulation

 Or by using hardware breakpoints

 …but not that easy nor handy
 Needs to sign pointers with the distant process key

 Not an infinite number of hardware breakpoint

 All the tool will have to be recoded

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

