
Biscuit authorization tokens

● Rust developer at Clever Cloud
● sozu HTTP reverse proxy
● WebAssembly based FaaS platform
● Biscuit tokens
● nom parser combinators

● github: geal
● twitter: gcouprie

Hi, I’m Geoffroy Couprie

State of the art

State of the art
JSON Web Tokens

JWT
tokens signed by public key cryptography

Macaroons
offline attenuation

● mainly signed by public key cryptography
● (also priv key, encryption, etc)
● contains data (user ID, etc)
● used to store session information: the server can

verify that the data was not tampered with
● used in OAuth and OIDC
● some pitfalls: alg=none vulnerability, revocation...

State of the art
Macaroons

JWT
tokens signed by public key cryptography

Macaroons
offline attenuation

● signed with private key crypto (HMAC)
● contains caveats: conditions over the

request that must be verified
● offline attenuation
● pitfalls: caveat language not defined,

needs the private key to verify

State of the art
Could we get macaroons

with public key cryptography?

JWT
tokens signed by public key cryptography

Macaroons
offline attenuation

● separate macaroon creator from verifier
● transmit a macaroon from service to service:

no need to share the key

Biscuit

Biscuit
Biscuit

Summary
a mix of JWT and macaroons

Block 0 pub root can read and write /folder1/file1
can read /folder2/file1

Block 1 pub key1 restrict to read operations

Block 2 pub key2 restrict to path prefix /folder1/

signature = sign(block0, root) + sign(block1, key1) + sign(block 2,
key2)

Verifier:
● knows root public key
● file is /folder1/file1
● operation is read
● verify the checks
● verify that we have the right to read /folder1/file1
● success!

Applications

Applications

API authorization
more flexibility for clients

Microservices
bearer tokens with attenuation

API authorization

the promise of OAuth: delegated authorization

in reality: coarse grained authorization, token with
too many rights, complex rights management
interfaces

Example: how to reduce the rights of your Github
token for CI?

Applications

API authorization
more flexibility for clients

Microservices
bearer tokens with attenuation

API authorization
with Biscuit

let users attenuate their token

● shorter expiration time
● limit to a specific project or file
● limit origin IP…

as long a the server provides the facts, they can be
used in authorization rules

Applications

API authorization
more flexibility for clients

Microservices
bearer tokens with attenuation

API authorization
with Biscuit

Apache Pulsar example:

● we host a multi-tenant Pular cluster
● we give each customer a Biscuit token with

full rights on their namespace
● they attenuate their token to get specific

rights for each application
-> a token that can only read on topic A and write
on topic B
-> a token that can read on topic C but only for the
next hour

all the other rules we defined still apply, customers
define their own on top

Applications

API authorization
more flexibility for clients

Microservices
bearer tokens with attenuation

Microservices
authorization

How do you authorize requests between microservices?

each service has its own authorization:
● services must be connected manually to each other
● Confused deputy problem: authorization is tied to

the service, not the request

Applications

API authorization
more flexibility for clients

Microservices
bearer tokens with attenuation

Microservices
authorization

How do you authorize requests between microservices?

centralized authorization:
● either through the API gateway, or a central

authorization service
● single point of failure
● great overhead

Applications

API authorization
more flexibility for clients

Microservices
bearer tokens with attenuation

Microservices
authorization

How do you authorize requests between microservices?

decentralized with bearer tokens (JWT):
● the same token with full rights is used everywhere
● a service could keep an old token and reuse it

Applications

API authorization
more flexibility for clients

Microservices
bearer tokens with attenuation

Microservices
authorization with Biscuit

bearer tokens get attenuated before transmission to the next
service

● from a full rights token, get a short lived token
● limit rights when requesting the next service:

○ ex: give rights to look up inventory, but not invoicing

services will only act with a very limited token

Applications

API authorization
more flexibility for clients

Microservices
bearer tokens with attenuation

Microservices
authorization with Biscuit

op: Order product 1
Token: full rights for
user #1

API
gateway

warehouse

op: Order product 1
Token: exp 30s, can
invoice user #1, can
order product,
product = #1

accounting

op: Order product 1
Token: exp 30s, can
order product,
product = #1

OK

Technical details

Technical details
Biscuit

Summary
a mix of JWT and macaroons

Cryptography
signature aggregation

Serialization
Protobuf

● public key cryptography (aggregated signatures)
● offline attenuation
● authorization language based on Datalog
● can contain data, code and authorization checks
● specifies revocation for a token and all derived

tokens
● can extract data for audit and replay

Technical details

Summary
a mix of JWT and macaroons

Cryptography
signature aggregation

Serialization
Protobuf

Cryptography

Signature aggregation: sign separately multiple
messages, then assemble them in one signature

● based on aggregated gamma signatures(
https://eprint.iacr.org/2018/414)

● implemented with Ristretto (
https://ristretto.group/)

● can be implemented on libsodium (example
code available)

https://eprint.iacr.org/2018/414
https://ristretto.group/

Technical details

Summary
a mix of JWT and macaroons

Cryptography
signature aggregation

Serialization
Protobuf

Serialization

● a token contains a list of blocks
● each block is a protobuf structure containing

data and authorization rules
● each block is signed
● attenuation is done by adding a block and

aggregating its signature with the token’s

Technical details

Summary
a mix of JWT and macaroons

Cryptography
signature aggregation

Serialization
Protobuf

Serialization

message Biscuit {

 required bytes authority = 1;

 repeated bytes blocks = 2;

 repeated bytes keys = 3;

 required Signature signature = 4;

}

message Block {

 required uint32 index = 1;

 repeated string symbols = 2;

 repeated Fact facts = 3;

 repeated Rule rules = 4;

 repeated Check checks = 5;

 optional string context = 6;

 optional uint32 version = 7;

}

Datalog

Datalog

Facts

Rules

Checks

Allow/deny policies

Facts

a Datalog fact is data:

 parent("Alice", "Bob");

 parent("Bob", "Charles");

 parent("Charles", "Denise");

can be seen as:

parent

Alice Bob

Bob Charles

Charles Denise

Datalog

Facts

Rules

Checks

Allow/deny policies

Rules

a rule is used to query data:
 parent_of_charles($name) <-

 parent($name, "Charles");

it can be translated to SQL:

SELECT DISTINCT name from parent where child = "Charles";

Result: parent_of_charles(“Bob”)

Datalog

Facts

Rules

Checks

Allow/deny policies

Rules

a rule can generate new facts
 grandparent($grandparent, $child) <-
 parent($grandparent, $parent),
 parent($parent, $child);

could be seen as:
create the fact grandparent($grandparent, $child)
 IF
 there is a fact parent($grandparent, $parent)
 AND there is a fact parent($parent, $child)
 with matching $parent variable

SQL version:
INSERT INTO grandparent(name, grandchild)
 SELECT A.name as name, B.child as grandchild
 FROM parent A, parent B

 WHERE A.child = B.name;

Datalog

Facts

Rules

Checks

Allow/deny policies

Rules

a rule can generate new facts
 grandparent($grandparent, $child) <-
 parent($grandparent, $parent),
 parent($parent, $child);

Creates:
grandparent("Alice", "Charles");
grandparent("Bob", "Denise");

parent

Alice Bob

Bob Charles

Charles Denise

grandparent

Alice Charles

Bob Denise

Datalog

Facts

Rules

Checks

Allow/deny policies

Checks

a check is a condition over the request
● all checks must pass
● they can be provided by the token or the verifier

check if operation(#ambient, #read);

check if
 time(#ambient, $date),
 $date <= 2018-12-20T00:00:00+00:00;

Datalog

Facts

Rules

Checks

Allow/deny policies

Allow/deny policies

allow and deny policies are tested one by one until one
matches
allow if
 operation(#ambient, $op),
 resource(#ambient, $res),
 right(#authority, $res, $op);

deny if true;

Datalog

Facts

Rules

Checks

Allow/deny policies

Example: RBAC

the token would contain user(#authority, #user_123)
On the verifier’s side:
role(#authority, #user_123, "team1”, #member);
role(#authority, #user_123, "team2”, #manager);
rights(#authority, "team1”, #member, "PROJECT1", [#read]);
rights(#authority, “team1”, #manager, "PROJECT1", [#read, #write, #delete]);

// a manager automatically gets the right of a member
role(#authority, $user_id, $team1, #member) <-
 role(#authority, $user_id, $team, #manager);

allow if
 resource(#ambient, $project),
 operation(#ambient, $op),
 user(#authority, $user_id),
 role(#authority, $user_id, $team, $role),
 rights(#authority, $team, $role, $project, $rights),
 $rights.contains($op);

// this catch-all policy will refuse the request
deny if true

Project status

Project status

Implementations

Real world usage

Links

Implementations

● Rust (with C and Webassembly bindings)
● Java
● Go
● Haskell

In preparation:
● C#
● Swift
● who’s next?...

Project status

Implementations

Real world usage

Links

Real world usage

● Biscuit Pulsar
● a (stealth) startup using a Biscuit token as license
● (not released yet) a layer for FoundationDB using

Biscuit to specify which key prefixes are accessible

Do you have fun ideas and applications? Come talk to me!

Project status

Implementations

Real world usage

Links

Links

● Specification https://github.com/clevercloud/biscuit
● Playground https://play-with-biscuit.cleverapps.io/
● implementations

○ https://github.com/clevercloud/biscuit-rust
○ https://github.com/clevercloud/biscuit-java
○ https://github.com/biscuit-auth/biscuit-go

● articles
○ intro to Biscuit

https://www.clever-cloud.com/blog/engineering
/2021/04/12/introduction-to-biscuit/

○ tutorial
https://www.clever-cloud.com/blog/engineering
/2021/04/15/biscuit-tutorial/

https://github.com/clevercloud/biscuit
https://play-with-biscuit.cleverapps.io/
https://github.com/clevercloud/biscuit-rust
https://github.com/clevercloud/biscuit-java
https://github.com/biscuit-auth/biscuit-go
https://www.clever-cloud.com/blog/engineering/2021/04/12/introduction-to-biscuit/
https://www.clever-cloud.com/blog/engineering/2021/04/12/introduction-to-biscuit/
https://www.clever-cloud.com/blog/engineering/2021/04/15/biscuit-tutorial/
https://www.clever-cloud.com/blog/engineering/2021/04/15/biscuit-tutorial/

CONTACT
Clever Cloud Nantes
3 rue de l’allier 44000 Nantes
02 85 52 07 69

mail@clever-cloud.com

+33 2 85 52 07 69

Clever Cloud Paris
137 rue vieille du temple 75003 Paris

https://www.clever-cloud.com

