
Revisiting the art of
Encoder-Fu for novel
shellcode obfuscation
techniques

Harpreet Singh
Yashdeep Saini

Who are we?

Harpreet Singh

● Author

● ~8 yrs exp. In pentest/redteam

● Anime lover (Otaku)

● @TheCyb3rAlpha

Yashdeep Saini

● Appsec/Prodsec/RedTeam

● ~3 yrs in security engineering,

sysinternals and exploitation.

● failing hard at becoming

trilingual

● @yinsain

Disclaimer!!

● All content present here is based on research or analysis done independently and any views,
thoughts, and opinions expressed in the text belong solely to the author(s), and not necessarily to
the author's employer, organization, committee or other group or individuals

● Examples shown in the given presentation are strictly limited to open source implementations to
prevent possible violation of any license.

● Talk is targeted towards audience with beginner/intermediate level experience with
exploitation and are interested in progressing towards advanced topics.

● This talk is derived from a long format talk and might have some content redacted or minimized
to fit into the time frame of the talk.

\x41-genda

● Back to basics - x86 v/s x86_64 v/s ARM Assembly instructions set

● A view of shellcode - plain vs encoded

● Oddballs and failures while analysis & comparative graphs in instruction pattern

● Obscure Mnemonics and pattern changes

● Shellcode encoder/decoder process

● Encoders basics and types of encoders

Back to basics - x86 vs x64 vs ARM

x86 registers

eax, ebx, ecx, edx,

esi, edi,

 ebp, esp

psw

x64 registers

rax, rbx, rcx, rdx,

rsi, rdi

rbp, rsp

r8-r15

psw

ARM registers **

r0-r7

r8*-r12 *

r13, r14*, r15 *

SP, LR, PC

CPSR

Back to basics - x86 vs x64 vs ARM

x86 x64 ARM

They all share common operations in categories

● Data movement - mov, push, pop, indirect references.

● Arithmetics operations - add, inc, neg, div, mul..

● Shifting operations - shr, shl,sar, sal,..

● Comparisons - lt, gt, cmp, test

● Control flows - jmp, jn, je, jz, jg,..

● Call and returns - syscall, int80h, ret, leave

● Stack movements - push, pop **

A view of shellcodes - plain

Sample used - msf linux exec cmd = ‘ls’ in x86, x86_64, armle

Shellcodes with encoders - xor family

Shellcodes with encoders - nonalpha(low),
shikata_ga_nai(excellent)

<- nonalpha

Shikata_ga_nai ->

Odd balls and failures while analysis

● objdump = linear sweep
● IDA = recursive traversal dfs
● Binary-ninja = also follows graph pattern
● Ghidra = Trace modelling (underlying form is graph only)

Compiler behaviours to note

● Gcc -m32 vs i686-linux-gcc can yield different instructions

Common methods

● branch function (pe-scrambler tool)
● using jump tables (now also seen in EDR bypass tools)

Comparative graph in instruction patterns

● file download & exec
● setuid
● adduser
● shell bind / reverse
● peinject / dll

Sources - shellstorm database and metasploit payloads

Comparative graph in instruction patterns

Sources - shellstorm database and metasploit payloads

Comparative graph in instruction patterns -
encoders

Sources - shellstorm database and metasploit payloads

Obscure Mnemonics and pattern changes

Major changes found

● Encoder types adding layers and branches = more control, call changes
● Encoders types adding transformation = more data movement

Charts don’t translate obscurity well

● For long repetitive operations on bytes REPNI, SCASB,..
● For data movement on test and move combined - CMOV, BSWAP,CMPS,..
● Decoding stages want stream - SHUFPD, PSHUFB, CMPXCHG, …

Essentially good techniques wherever can start using MMX, SSE, AVX instructions for help

Why Encode?

Without Encoders With Encoders

Shellcodes/payload in itself may not be directly

compatible

Shellcodes/payload can be transformed as per

transport supported by target application

Shellcodes are prone to badchars, a single

badchars can break the shellcode

Encoders can selectively replace badchars

RAW shellcodes without obfuscation and

encoding are easy to detect (thanks to AV

signatures)

Encoders can provide obfuscation layer on top

of encoding to bypass signature detection

Shellcode Encoder/Decoder process

Sh
el

lc
od

e
(R

AW
)

Encoder Stub

Encoded Shellcode

Decoder Stub Shellcode injected in
memory

Decoder Stub loads and
decodes the shellcode

Encoded Shellcode

Shellcode executes successfully in
memory

Issues that may arise?

● Not enough memory allocated for the encoded shellcode and it might
overwrite nearby regions during decoding process.

● Specific architecture have specific encoders available. Cross architecture
encoding/decoding might fail if instructions are not available.

● Encoded shellcode may still have bad bytes unless all the bytes are
tested in memory. (bad char removal is a continuous process)

● If RWX/RX permissions are not set, shellcode won’t get executed and no

decoding will take place.

Imagine Encoders as CULPRIT

● Decoder stub itself has instructions as patterns
● Automated tools mostly have prefix stub hardcoded with replacement

options for parameters
● Generic allocation patterns when stub decodes the sequence

How do we fix that??

● Moving towards simpler approaches - find alternate instruction paths (
substituting with multi-step deconstructed instructions) - mov eax, 0 can also
be xor eax, eax

● Moving towards difficult approaches - find complex instructions paths (utilize
mmx, sse, avx or even aes-ni instruction support

Encoders - fundamentals | broad division

● Basic encoders (substitution) - basic one-to-one mapping
● Morphism (polymorphism) - dynamic key generation/next instruction

generation
● Mutated or polyglot encoders
● Cross-compilation tricks (not essentially an encoder)
● Encrypted (even though by its nature can give all polymorphic features

has its pitfalls too)

Common Encoders used in tools

From simplest to complex operations in place

● Substitution - ROT13, next-byte

● Arithmetic operations

● XOR

● RC4

● BloXOR (Metamorphic)

● Shikata Ga Nai (Polymorphic and a de-facto

Hammer by new learners)

Case studies

Sometimes we forget to even see how simpler operations are working amazingly

● Nop generators

● XANAX

● Alpha Upper

● Encrypted - AES-NI extension used

NOP Generators

● Extremely simple feature - easily bypasses signature scans for NOP sleds.

● Ton of support in metasploit framework

● Not limited to msf - can manually figure out more nops for our context.

XANAX Encoding

Encoding Schema:

XOR - ADD - NOT - ADD - XOR

Keys are hardcoded:

Source: https://gist.github.com/alanvivona/86d76d9fbba3035e1a80fa2d8ff8999b

XANAX Decoding

Decoding Schema:

XOR - SUB - NOT - SUB - XOR

Source: https://gist.github.com/alanvivona/b1259e4d0f3e2c2df5c4fe5a50b71fc6

Alpha Upper

Nibble map table

0 <keys> => c1, c2, c3,..

1 <keys> => c1, c2, c3,..

2 <keys> => c1, c2, c3,..

…

…

15 <keys> => c1, c2, c3,..

1 0 1 0 1 0 0

Source -
https://rdoc.info/gems/librex/0.0.68/Rex/Enc
oder/Alpha2/Generic#encode-class_method

0

4 - bit
4 - bit

Alpha Upper

Source -
https://rdoc.info/gems/librex/0.0.68/Rex/Enc
oder/Alpha2/Generic#encode-class_method

Algo

1. Loop all bytes as B
2. Lower nibble B as key get first C1?
3. From C1 take upper nibble
4. Second lowN= (uC ^ uB) & 0x0F
5. Get C2 from second lowN
6. Encoded value = C1 + C2

1 0 1 0 1 0 00

map [0100] => C1
Upper nibble = C1 >> 0x04
Second low nibble = (C1 >> 0x04 ^
0101) ^ 0x0F
map [second low nibble] = C2
Encoded = c1 + c2

Alpha Upper

← Decoder stub

Encrypted

● Metasploit - Encryption support (AES256, RC4, XOR, BASE64)

● Issue? - Software-level encryption

● Lengthy shellcode decoder

● Not flexible enough in terms of keying

● Out of the box solution - change instructions to aes-ni make it pseudo

mutated

AES-NI instruction set

● Hardware-accelerated versions of AES

● Reduced calls per basic round operations

● Compatible on most platforms since 2010, even with AMD spec

● Good enough to confused scanner which are yet to update YARA rules .

Hardware Acceleration?

AES-NI Instruction set

Instruction Description

AESENC Perform one round of an AES encryption flow

AESENCLAST Perform the last round of an AES encryption flow

AESDEC Perform one round of an AES decryption flow

AESDECLAST Perform the last round of an AES decryption flow

AESKEYGENASSIST Assist in AES round key generation

AESIMC Assist in AES Inverse Mix Columns

Hardware Acceleration?

linux/x64/exec cmd=”uname -a”

Tool: https://github.com/cryptolok/MorphAES

Random Key

● Encrypted payload sounds very interesting, needs extra work

● Guarantee - polymorphic, mutated payload

● Does not guarantee - badchar issue still found

● Might need to add a layer for filtering badchards by character mapping table.

● Support for modern machines like Apple M1??

● M1 and ARM in general will need Neon,helium intrinsics support.

● Future scope - developing a ROP chain out of AES-NI instructions.

From here on for AES-NI?

Thank you !!

