
ORAMFS:
Achieving Storage-Agnostic Privacy

Nils Amiet, Tommaso Gagliardoni July 7, 2021

 2

Who am I?

● Nils Amiet
● Research team @
● Main tech interests:

– Open source software
– Big data analytics
– Modern programming languages

 3

Who am I?

● Tommaso Gagliardoni
● Research team @
● Main tech interests:

– Cryptography
– Quantum computing & quantum security
– Anonymity and Privacy

 4

Once Upon a Time… Encrypted Data at Rest
● HR dept. keeps database of

employees’ salary records on
public cloud (AWS/Azure)

HR Employees
database

 5

Once Upon a Time… Encrypted Data at Rest
● HR dept. keeps database of

employees’ salary records on
public cloud (AWS/Azure)

● Cloud provider is untrusted
(honest-but-curious)

 6

Once Upon a Time… Encrypted Data at Rest
● HR dept. keeps database of

employees’ salary records on
public cloud (AWS/Azure)

● Cloud provider is untrusted
(honest-but-curious)

● All information is encrypted
(financial information, private)

 7

Once Upon a Time… Encrypted Data at Rest
● HR dept. keeps database of

employees’ salary records on
public cloud (AWS/Azure)

● Cloud provider is untrusted
(honest-but-curious)

● All information is encrypted
(financial information, private)

● So all good?

 8

Once Upon a Time… Encrypted Data at Rest
● HR dept. keeps database of

employees’ salary records on
public cloud (AWS/Azure)

● Cloud provider is untrusted
(honest-but-curious)

● All information is encrypted
(financial information, private)

● So all good?

● New employee joins

 9

Once Upon a Time… Encrypted Data at Rest
● HR dept. keeps database of

employees’ salary records on
public cloud (AWS/Azure)

● Cloud provider is untrusted
(honest-but-curious)

● All information is encrypted
(financial information, private)

● So all good?

● New employee joins

● Employee gets a raise

 10

Once Upon a Time… Encrypted Data at Rest
● HR dept. keeps database of

employees’ salary records on
public cloud (AWS/Azure)

● Cloud provider is untrusted
(honest-but-curious)

● All information is encrypted
(financial information, private)

● So all good?

● New employee joins

● Employee gets a raise

● Employee quits

 11

Trusted Storage
● Secure smartcard needs to

manage independent keys

CPU
(trusted)

Untrusted
memory
(cheap)

 12

Trusted Storage
● Secure smartcard needs to

manage independent keys

● Main storage untrusted: can
be analyzed, modified

CPU
(trusted)

Untrusted
memory
(cheap)

 13

Trusted Storage
● Secure smartcard needs to

manage independent keys

● Main storage untrusted: can
be analyzed, modified

● Encrypt and use a master key
stored on secure memory

Secure
memory

(expensive)

CPU
(trusted)

Untrusted
memory
(cheap)

Master key

 14

Trusted Storage
● Secure smartcard needs to

manage independent keys

● Main storage untrusted: can
be analyzed, modified

● Encrypt and use a master key
stored on secure memory

● “event X triggers key Y”

● “this key opens door Z”

● “door Z is CEO’s office”

● “key has been
updated/added/removed”

Secure
memory

(expensive)

CPU
(trusted)

Untrusted
memory
(cheap)

Master key

 15

The Good’Ol Times: Truecrypt
TrueCrypt: one of the earliest, efficient full-disk
encryption software (released 2004)

 16

The Good’Ol Times: Truecrypt
TrueCrypt: one of the earliest, efficient full-disk
encryption software (released 2004)

Troubled history, discontinued in 2014, replaced
by VeraCrypt

Also: check out this guy, LOL

 17

The Good’Ol Times: Truecrypt
TrueCrypt: one of the earliest, efficient full-disk
encryption software (released 2004)

Troubled history, discontinued in 2014, replaced
by VeraCrypt

Physical volume (hard disk/partition)

Encrypted
TrueCrypt Volume

Empty Space (FAT16 Filesystem: Contiguous)

 18

The Good’Ol Times: Truecrypt
TrueCrypt: one of the earliest, efficient full-disk
encryption software (released 2004)

Troubled history, discontinued in 2014, replaced
by VeraCrypt

Plausible deniability: hidden volumes

Physical volume (hard disk/partition)

Encrypted
TrueCrypt Volume

Empty Space (FAT16 Filesystem: Contiguous)Hidden Volume

 19

The Good’Ol Times: Truecrypt
TrueCrypt: one of the earliest, efficient full-disk
encryption software (released 2004)

Troubled history, discontinued in 2014, replaced
by VeraCrypt

Plausible deniability: hidden volumes

Physical volume (hard disk/partition)

 20

The Good’Ol Times: Truecrypt
TrueCrypt: one of the earliest, efficient full-disk
encryption software (released 2004)

Troubled history, discontinued in 2014, replaced
by VeraCrypt

Plausible deniability: hidden volumes

“modern” solid-state drives:
caching / layering / TRIM

 21

The Good’Ol Times: Truecrypt
TrueCrypt: one of the earliest, efficient full-disk
encryption software (released 2004)

Troubled history, discontinued in 2014, replaced
by VeraCrypt

Plausible deniability: hidden volumes

“modern” solid-state drives:
caching / layering / TRIM

 22

The Good’Ol Times: Truecrypt
TrueCrypt: one of the earliest, efficient full-disk
encryption software (released 2004)

Troubled history, discontinued in 2014, replaced
by VeraCrypt

Plausible deniability: hidden volumes

“modern” solid-state drives:
caching / layering / TRIM

 23

Access Patterns Matter

● Encryption alone
does not hide
access patterns

● These can leak
sensitive
information

Program

Untrusted
storage

write

read
position and
size of data

 24

ORAM (Oblivious Random Access Machines)

ORAM

Untrusted
storage

oblivious
access

Program

write

read

 25

ORAM (Oblivious Random Access Machines)

ORAM

Untrusted
storage

oblivious
access

Program

write

read

Obfuscated access program

 26

ORAM (Oblivious Random Access Machines)

ORAM

Untrusted
storage

oblivious
access

Program

write

read

Trusted storage

 27

A Brief History of ORAM Schemes
● Idea started in 1987 (by cryptographer Oded Goldreich)

● Trivial scheme: encrypt database, and then at every read or write, download whole database, decrypt, and
then re-encrypt with a randomized cipher

● Subsequent works: hierarchical buffers, Bloom filters, cuckoo hashing (security and efficiency issues)

 28

A Brief History of ORAM Schemes
● Idea started in 1987 (by cryptographer Oded Goldreich)

● Trivial scheme: encrypt database, and then at every read or write, download whole database, decrypt, and
then re-encrypt with a randomized cipher

● Subsequent works: hierarchical buffers, Bloom filters, cuckoo hashing (security and efficiency issues)

● Basic principles for all schemes:

1) Store data in encrypted blocks and keep track of their index (position)

2) If you need a certain block, never download only that block; download some more instead

3) Every time decrypt and re-encrypt the downloaded blocks with a randomized cipher

4) But also shuffle somehow blocks’ positions at every access

● Need to reach a tradeoff between security and performance

 29

A Brief History of ORAM Schemes
● Idea started in 1987 (by cryptographer Oded Goldreich)

● Trivial scheme: encrypt database, and then at every read or write, download whole database, decrypt, and
then re-encrypt with a randomized cipher

● Subsequent works: hierarchical buffers, Bloom filters, cuckoo hashing (security and efficiency issues)

● Basic principles for all schemes:

1) Store data in encrypted blocks and keep track of their index (position)

2) If you need a certain block, never download only that block; download some more instead

3) Every time decrypt and re-encrypt the downloaded blocks with a randomized cipher

4) But also shuffle somehow blocks’ positions at every access

● Need to reach a tradeoff between security and performance

● 2011: tree-based ORAM (Shi et al.)

● 2012: Path-ORAM (Stefanov et al.)

 30

Path ORAM

● Regular block access
– Just access the physical block by its logical block ID

● Path ORAM
– We don’t want to leak that information
– Cannot access physical blocks directly by logical

block ID

 31

Regular block access

● read(block: int)
–

– return os.read(block)

● write(block: int, data: [byte])
–

– return os.write(block, data)

 32

Path ORAM block access

● read(block: int)
– b = f(block)
– return os.read(b)

● write(block: int, data: [byte])
– b = f(block)
– return os.write(b, data)

function f(block: int) {
… ?

}

 33

Path ORAM idea

● What if we access more blocks than required?
● Which blocks should we access? How can we be sure that the

“true” block is in there?
● Solution: group blocks in nodes, represent nodes in a tree

– And map blocks to tree leaves
– Path from root to leaf is unique and defines list of blocks to access
– Guaranteed that “true” block is contained in that list
– Requires storing small amount of client data

 34

Path ORAM

 35

Introducing Oramfs

● https://github.com/kudelskisecurity/oramfs
● Storage-agnostic
● GPL 3.0
● ORAM filesystem written in Rust
● Resizing supported
● Built to support multiple ORAM schemes (Path ORAM, ...)
● Multiple encryption ciphers (AES-GCM, etc.)

https://github.com/kudelskisecurity/oramfs

 36

Inputs

● Public directory (the “server”)
– This can be stored on untrusted storage
– Anything that appears as a local directory (e.g. mount

remote storage as local directory using Rclone)

● Private directory (the “client”)
– This is what the user accesses
– Just a regular directory where files can be read or written

 37

Architecture
+---+

| |
| ext4 filesystem | <---+ or any other FS or your choice

| |

+---+

| |

| Loop device (/dev/loop0) | <---+ created with losetup

| |

+---+

| |
| ORAMFS (FUSE) | <---+ Input : *public* local directory

| | Output : *private* “oram” single file,

+-------------------+-----------------+-------------+ for use with loop device

| | | |

| Local directory | Cloud storage | SSHFS | <---+ Input directory can be anything

| | | | that appears as a local directory,

+-------------------+-----------------+-------------+ including mounted remote directories.

 Examples: SSH, FTP, anything supported

 by rclone or similar tools,

 any mounted FUSE filesystem, etc.

 38

Performance with default settings

● UtahFS
– Encrypted storage system, FUSE-based, backed by cloud storage
– Optionally supports ORAM (Path ORAM)
– https://github.com/cloudflare/utahfs

● Write 10MB random data to ORAM
– UtahFS (local disk, oram=true): 30sec
– Oramfs (local disk, AES-GCM): 15 sec

● => 2x speedup (write)

● Read 10MB random data from ORAM
– UtahFS: 9.37 sec
– Oramfs: 1.05 sec

● => 9x speedup (read)

https://github.com/cloudflare/utahfs

 39

Demo

 40

Conclusions

● Increased privacy for untrusted storage users
● Ease of use
● Still a prototype

 41

Future work

● Performance improvements
● Support more platforms
● Implement more ORAM schemes

 42

More resources

● Oramfs on Github
– https://github.com/kudelskisecurity/oramfs

● https://research.kudelskisecurity.com
– Path ORAM blog post

● Path ORAM paper
– https://eprint.iacr.org/2013/280.pdf

https://github.com/kudelskisecurity/oramfs
https://research.kudelskisecurity.com/
https://eprint.iacr.org/2013/280.pdf

 43

Thank you

● Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

