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Trusted Storage
● Secure smartcard needs to 

manage independent keys

● Main storage untrusted: can 
be analyzed, modified

● Encrypt and use a master key 
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● “event X triggers key Y”

● “this key opens door Z”

● “door Z is CEO’s office”

● “key has been 
updated/added/removed”
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Access Patterns Matter

● Encryption alone 
does not hide 
access patterns

● These can leak 
sensitive 
information

Program

Untrusted 
storage

write

read
position and 
size of data
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A Brief History of ORAM Schemes
● Idea started in 1987 (by cryptographer Oded Goldreich)

● Trivial scheme: encrypt database, and then at every read or write, download whole database, decrypt, and 
then re-encrypt with a randomized cipher

● Subsequent works: hierarchical buffers, Bloom filters, cuckoo hashing (security and efficiency issues)
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● Trivial scheme: encrypt database, and then at every read or write, download whole database, decrypt, and 
then re-encrypt with a randomized cipher

● Subsequent works: hierarchical buffers, Bloom filters, cuckoo hashing (security and efficiency issues)

● Basic principles for all schemes:

1) Store data in encrypted blocks and keep track of their index (position)

2) If you need a certain block, never download only that block; download some more instead

3) Every time decrypt and re-encrypt the downloaded blocks with a randomized cipher

4) But also shuffle somehow blocks’ positions at every access

● Need to reach a tradeoff between security and performance

● 2011: tree-based ORAM (Shi et al.)

● 2012: Path-ORAM (Stefanov et al.)



  30

Path ORAM

● Regular block access
– Just access the physical block by its logical block ID

● Path ORAM
– We don’t want to leak that information
– Cannot access physical blocks directly by logical 

block ID
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Regular block access

● read(block: int)
–

– return os.read(block)

● write(block: int, data: [byte])
–

– return os.write(block, data)
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Path ORAM block access

● read(block: int)
– b = f(block)
– return os.read(b)

● write(block: int, data: [byte])
– b = f(block)
– return os.write(b, data)

function f(block: int) {
… ?

}
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Path ORAM idea

● What if we access more blocks than required?
● Which blocks should we access? How can we be sure that the 

“true” block is in there?
● Solution: group blocks in nodes, represent nodes in a tree

– And map blocks to tree leaves
– Path from root to leaf is unique and defines list of blocks to access
– Guaranteed that “true” block is contained in that list
– Requires storing small amount of client data
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Path ORAM
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Introducing Oramfs

● https://github.com/kudelskisecurity/oramfs
● Storage-agnostic
● GPL 3.0
● ORAM filesystem written in Rust
● Resizing supported
● Built to support multiple ORAM schemes (Path ORAM, ...)
● Multiple encryption ciphers (AES-GCM, etc.)

https://github.com/kudelskisecurity/oramfs


  36

Inputs

● Public directory (the “server”)
– This can be stored on untrusted storage
– Anything that appears as a local directory (e.g. mount 

remote storage as local directory using Rclone)

● Private directory (the “client”)
– This is what the user accesses
– Just a regular directory where files can be read or written
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Architecture
+---------------------------------------------------+

|                                                   |
|                   ext4 filesystem                 | <---+ or any other FS or your choice

|                                                   |

+---------------------------------------------------+

|                                                   |

|               Loop device (/dev/loop0)            | <---+ created with losetup

|                                                   |

+---------------------------------------------------+

|                                                   |
|                    ORAMFS (FUSE)                  | <---+ Input  : *public* local directory

|                                                   |       Output : *private* “oram” single file, 

+-------------------+-----------------+-------------+                for use with loop device

|                   |                 |             |

|  Local directory  |  Cloud storage  |    SSHFS    | <---+ Input directory can be anything

|                   |                 |             |       that appears as a local directory,

+-------------------+-----------------+-------------+       including mounted remote directories.

                                                            Examples: SSH, FTP, anything supported

                                                            by rclone or similar tools, 

                                                            any mounted FUSE filesystem, etc.
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Performance with default settings

● UtahFS
– Encrypted storage system, FUSE-based, backed by cloud storage
– Optionally supports ORAM (Path ORAM)
– https://github.com/cloudflare/utahfs

● Write 10MB random data to ORAM
– UtahFS (local disk, oram=true): 30sec
– Oramfs (local disk, AES-GCM): 15 sec

● => 2x speedup (write)

● Read 10MB random data from ORAM
– UtahFS: 9.37 sec
– Oramfs: 1.05 sec

● => 9x speedup (read)

https://github.com/cloudflare/utahfs
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Demo
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Conclusions

● Increased privacy for untrusted storage users
● Ease of use
● Still a prototype
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Future work

● Performance improvements
● Support more platforms
● Implement more ORAM schemes
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More resources

● Oramfs on Github
– https://github.com/kudelskisecurity/oramfs

● https://research.kudelskisecurity.com
– Path ORAM blog post

● Path ORAM paper
– https://eprint.iacr.org/2013/280.pdf

https://github.com/kudelskisecurity/oramfs
https://research.kudelskisecurity.com/
https://eprint.iacr.org/2013/280.pdf
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Thank you

● Questions?
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