
Meet Piotr, a
firmware emulation
tool for trainers and
researchers
Damien Cauquil



/Me

▶ Hacker since 1998

▶ Hardware/software
reverse-engineer

▶ IoT Security trainer

▶ Knows how to hold a soldering
iron (obviously)
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IoT Security Training

▶ I’ve been an IoT Security trainer for some years

▶ I used a COTS device bought from Amazon during my training
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Best. Idea. Ever.
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Other issues with COTS devices ...

▶ You may buy a lot of them as it may be
discontinued

▶ Prices may vary a lot !

7/39



COVID-19: remote training sessions

▶ Difficult to send real devices to attendees (delays, cost, ...)

▶ One of them may break it eventually ...
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Virtualization FTW!

It became clear that:

▶ I needed a way to emulate IoT devices (and especially my Chinese IP Camera)

I needed a tool easy to install/setup/use

I needed to be able to send (small) images of virtual devices over the network
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State of the Art

I then started to look for the best tools and found:

▶ Qemu: THE emulation tool !

▶ Firmadyne: an automated firmware emulation framework

▶ ARM-X: a training-oriented firmware emulation tool
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State of the Art

Tool easy setup easy to use create new device export/import
Qemu    

Firmadyne    

ARM-X    
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Why another tool ?

ARM-X is the best candidate so far, BUT:

▶ It is made of Bash scripts

▶ Complex configuration files

▶ No easy import/export feature

▶ Not really modular
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ARM-X vs. Piotr

▶ Piotr, like ARM-X, uses a Qemu virtual host to host our target device (chroot)

▶ Piotr relies on Plan 9 Resource Sharing Protocol (9P2000) rather than Samba (no
network required)

▶ It also uses default Qemu agent to interact with Qemu hosts

▶ Written in Python, can be installed with pip

▶ Allows to export and import of virtual devices
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Software architecture
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Creating a device

So you want to emulate a real IoT device ? Follow these steps:

▶ Extract your device root filesystem and save it into a dedicated folder
▶ Create some launching scripts that will be used to start the device from your Qemu

host
▶ Stick with Piotr’s default Linux kernel or build yours with buildroot
▶ Fill a YAML configuration file to tell Piotr where to find the kernel and the root

filesystem
▶ Run your emulated device with Piotr !
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Example YAML config file

version: "1.0"
device:

name: "Damn Vulnerable ARM Router by Saumil Shah"
machine:

platform: virt
memory: 1024
cpu: cortex-a7

bootargs: "root=/dev/vda rw console=ttyAMA0,115200"
guestfs: virtfs
drive_type: virtio

network:
nic0: user

redirect:
nic0:

web: tcp,8081,80
lightsrv: tcp,8080,8080
gdb: tcp,4444,4444
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Exporting a device

Exporting an existing device is as simple as this:

$ sudo piotr device export example ./example.piotr
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Importing a device

Importing a device is also dead simple:

$ sudo piotr device add ./example.piotr
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Importing a device
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Debugging a target’s process

$ piotr-ps
[...]
725 root lightsrv
[...]
$ piotr-debug 725
$ gdb-multiarch
(gdb) set architecture arm
(gdb) target extended-remote 127.0.0.1:4444

Frida-server is also available but only compatible with glibc-based systems so far.
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Instrumenting with Python

from piotr.api import *
# get running instance of virtual device
myinst = Piotr.instance('demo')

# get target pid and attach debugger
pid = myinst.pid('/usr/bin/lightsrv')
dbg = myinst.debug(pid)

# continue execution
dbg.cont()
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Demo 1: Pwning an IP Chinese camera
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Demo 1: Pwning an IP Chinese camera
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Demo 2: Emulating a RUTX10 (Teltonika)
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Demo 3: Automated exploitation of DVAR
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Demo 3: Automated exploitation of DVAR
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Conclusion

▶ Piotr provides a docker-free/network-free/qemu-based device emulation environment

It emphasizes on ease of use, sharing and automation

Can be used to build other tools upon it (extensible) !

Compatible with ARM-X: similar architecture, different tooling
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Give it a try !

pip install piotr

 https://piotr.readthedocs.io/

 https://github.com/virtualabs/piotr
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Question(s) ?
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What does PIOTR stand for ?

▶ Pythonic IoT Research framework
▶ Piotr Is Obviously a Tough Russian
▶ Pretty Ineffective Obscur Tool for Research
▶ Pwning Iot Objects for Training and Research
▶ Piotr Instruments Other Targets as Root

Choosing a name for a tool is way too much responsibility.
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Thank you
Contact information:

Email: dcauquil@quarkslab.com

Phone: +33 1 58 30 81 51

Website: https://www.quarkslab.com
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