
Meet Piotr, a
firmware emulation
tool for trainers and
researchers
Damien Cauquil



/Me

▶ Hacker since 1998

▶ Hardware/software
reverse-engineer

▶ IoT Security trainer

▶ Knows how to hold a soldering
iron (obviously)



Table of Contents

Why Piotr ?
IoT Security Training
State of the Art
Why another tool ?

Introducing Piotr
Software architecture
Creating, exporting and importing a device
Vulnerability research & remote debugging

Demos

Conclusion

3/39



Table of Contents

Why Piotr ?
IoT Security Training
State of the Art
Why another tool ?

Introducing Piotr

Demos

Conclusion

4/39



IoT Security Training

▶ I’ve been an IoT Security trainer for some years

▶ I used a COTS device bought from Amazon during my training

5/39



Best. Idea. Ever.

6/39



Other issues with COTS devices ...

▶ You may buy a lot of them as it may be
discontinued

▶ Prices may vary a lot !

7/39



COVID-19: remote training sessions

▶ Difficult to send real devices to attendees (delays, cost, ...)

▶ One of them may break it eventually ...

8/39



Virtualization FTW!

It became clear that:

▶ I needed a way to emulate IoT devices (and especially my Chinese IP Camera)

I needed a tool easy to install/setup/use

I needed to be able to send (small) images of virtual devices over the network

9/39



Virtualization FTW!

It became clear that:

▶ I needed a way to emulate IoT devices (and especially my Chinese IP Camera)

▶ I needed a tool easy to install/setup/use

I needed to be able to send (small) images of virtual devices over the network

9/39



Virtualization FTW!

It became clear that:

▶ I needed a way to emulate IoT devices (and especially my Chinese IP Camera)

▶ I needed a tool easy to install/setup/use

▶ I needed to be able to send (small) images of virtual devices over the network

9/39



Table of Contents

Why Piotr ?
IoT Security Training
State of the Art
Why another tool ?

Introducing Piotr

Demos

Conclusion

10/39



State of the Art

I then started to look for the best tools and found:

▶ Qemu: THE emulation tool !

▶ Firmadyne: an automated firmware emulation framework

▶ ARM-X: a training-oriented firmware emulation tool

11/39



State of the Art

Tool easy setup easy to use create new device export/import
Qemu    

Firmadyne    

ARM-X    

12/39



Table of Contents

Why Piotr ?
IoT Security Training
State of the Art
Why another tool ?

Introducing Piotr

Demos

Conclusion

13/39



Why another tool ?

ARM-X is the best candidate so far, BUT:

▶ It is made of Bash scripts

▶ Complex configuration files

▶ No easy import/export feature

▶ Not really modular

14/39



Table of Contents

Why Piotr ?
IoT Security Training
State of the Art
Why another tool ?

Introducing Piotr
Software architecture
Creating, exporting and importing a device
Vulnerability research & remote debugging

Demos

Conclusion

15/39



Table of Contents

Why Piotr ?

Introducing Piotr
Software architecture
Creating, exporting and importing a device
Vulnerability research & remote debugging

Demos

Conclusion

16/39



ARM-X vs. Piotr

▶ Piotr, like ARM-X, uses a Qemu virtual host to host our target device (chroot)

▶ Piotr relies on Plan 9 Resource Sharing Protocol (9P2000) rather than Samba (no
network required)

▶ It also uses default Qemu agent to interact with Qemu hosts

▶ Written in Python, can be installed with pip

▶ Allows to export and import of virtual devices

17/39



Software architecture

18/39



Table of Contents

Why Piotr ?

Introducing Piotr
Software architecture
Creating, exporting and importing a device
Vulnerability research & remote debugging

Demos

Conclusion

19/39



Creating a device

So you want to emulate a real IoT device ? Follow these steps:

▶ Extract your device root filesystem and save it into a dedicated folder
▶ Create some launching scripts that will be used to start the device from your Qemu

host
▶ Stick with Piotr’s default Linux kernel or build yours with buildroot
▶ Fill a YAML configuration file to tell Piotr where to find the kernel and the root

filesystem
▶ Run your emulated device with Piotr !

20/39



Example YAML config file

version: "1.0"
device:

name: "Damn Vulnerable ARM Router by Saumil Shah"
machine:

platform: virt
memory: 1024
cpu: cortex-a7

bootargs: "root=/dev/vda rw console=ttyAMA0,115200"
guestfs: virtfs
drive_type: virtio

network:
nic0: user

redirect:
nic0:

web: tcp,8081,80
lightsrv: tcp,8080,8080
gdb: tcp,4444,4444

21/39



Exporting a device

Exporting an existing device is as simple as this:

$ sudo piotr device export example ./example.piotr

22/39



Importing a device

Importing a device is also dead simple:

$ sudo piotr device add ./example.piotr

23/39



Importing a device

24/39



Table of Contents

Why Piotr ?

Introducing Piotr
Software architecture
Creating, exporting and importing a device
Vulnerability research & remote debugging

Demos

Conclusion

25/39



Debugging a target’s process

$ piotr-ps
[...]
725 root lightsrv
[...]
$ piotr-debug 725
$ gdb-multiarch
(gdb) set architecture arm
(gdb) target extended-remote 127.0.0.1:4444

Frida-server is also available but only compatible with glibc-based systems so far.

26/39



Instrumenting with Python

from piotr.api import *
# get running instance of virtual device
myinst = Piotr.instance('demo')

# get target pid and attach debugger
pid = myinst.pid('/usr/bin/lightsrv')
dbg = myinst.debug(pid)

# continue execution
dbg.cont()

27/39



Table of Contents

Why Piotr ?
IoT Security Training
State of the Art
Why another tool ?

Introducing Piotr
Software architecture
Creating, exporting and importing a device
Vulnerability research & remote debugging

Demos

Conclusion

28/39



Demo 1: Pwning an IP Chinese camera

29/39



Demo 1: Pwning an IP Chinese camera

30/39



Demo 2: Emulating a RUTX10 (Teltonika)

31/39



Demo 3: Automated exploitation of DVAR

32/39



Demo 3: Automated exploitation of DVAR

33/39



Table of Contents

Why Piotr ?
IoT Security Training
State of the Art
Why another tool ?

Introducing Piotr
Software architecture
Creating, exporting and importing a device
Vulnerability research & remote debugging

Demos

Conclusion

34/39



Conclusion

▶ Piotr provides a docker-free/network-free/qemu-based device emulation environment

It emphasizes on ease of use, sharing and automation

Can be used to build other tools upon it (extensible) !

Compatible with ARM-X: similar architecture, different tooling

35/39



Conclusion

▶ Piotr provides a docker-free/network-free/qemu-based device emulation environment

▶ It emphasizes on ease of use, sharing and automation

Can be used to build other tools upon it (extensible) !

Compatible with ARM-X: similar architecture, different tooling

35/39



Conclusion

▶ Piotr provides a docker-free/network-free/qemu-based device emulation environment

▶ It emphasizes on ease of use, sharing and automation

▶ Can be used to build other tools upon it (extensible) !

Compatible with ARM-X: similar architecture, different tooling

35/39



Conclusion

▶ Piotr provides a docker-free/network-free/qemu-based device emulation environment

▶ It emphasizes on ease of use, sharing and automation

▶ Can be used to build other tools upon it (extensible) !

▶ Compatible with ARM-X: similar architecture, different tooling

35/39



Give it a try !

pip install piotr

 https://piotr.readthedocs.io/

 https://github.com/virtualabs/piotr

36/39



Question(s) ?

37/39



What does PIOTR stand for ?

▶ Pythonic IoT Research framework
▶ Piotr Is Obviously a Tough Russian
▶ Pretty Ineffective Obscur Tool for Research
▶ Pwning Iot Objects for Training and Research
▶ Piotr Instruments Other Targets as Root

Choosing a name for a tool is way too much responsibility.

38/39



Thank you
Contact information:

Email: dcauquil@quarkslab.com

Phone: +33 1 58 30 81 51

Website: https://www.quarkslab.com


	Why Piotr ?
	IoT Security Training
	State of the Art
	Why another tool ?

	Introducing Piotr
	Software architecture
	Creating, exporting and importing a device
	Vulnerability research & remote debugging

	Demos
	Conclusion

