
Mattermost
End-to-End
Encryption Plugin
Adrien Guinet & Angèle Bossuat

Table of Contents

Introduction

Technical implementation
Limitations due to Mattermost’s design
What flavor of cryptography do we use?

Demo

The webapp integrity problem

2/26

Setup

End-to-end encryption?

▶ Encrypt (and sign) messages on end devices just before sending them
▶ (Verification) and decryption also happen on the receiving end device(s)

⇒ End (device)-to-End (device) Encryption (E2EE)!

Angèle Adrien

[Hey adrien, I’ve bootstrapped the slides!]

[The PTS talk?]

[Yes, here’s the password!]

3/26

Setup

Why?

▶ Privacy: I don’t want anyone but Angèle to be able to read my messages
▶ Authenticity: am I really talking to Angèle?
▶ Integrity: is this really the message Angèle has sent?

Angèle Adrien

[Hey adrien, I’ve bootstrapped the slides!]

[The PTS talk?]

[Yes, here’s the password!]

3/26

What/who are we protecting this from?

Passive attacker model

▶ An attacker passively listens to what goes in & out of the server
▶ Passively = does not modify any communication

Active attacker model

▶ An attacker actively listens and tampers with what goes in & out of the server
▶ Examples of what they can do:

▶ deliver fake public keys for some users (a form of MitM)
▶ deliver compromised Javascript to clients

4/26

Was this not already done before?

Anonymous Mattermost plugin

https://github.com/bakurits/mattermost-plugin-anonymous

▶ Uses RSA for key exchange, through node-rsa (full JS implementation) ⇒ no usage of
unextractible keys from WebCrypto

▶ No authentication of messages
▶ The choice of encrypted messages is done per message ̸= per channel (our need)

Other E2EE chat software

▶ Mobile-based authentication: WhatsApp, Signal, Olvid
▶ Classical authentication: Matrix, rocket.chat

5/26

https://github.com/bakurits/mattermost-plugin-anonymous

Table of Contents

Introduction

Technical implementation
Limitations due to Mattermost’s design
What flavor of cryptography do we use?

Demo

The webapp integrity problem

6/26

Table of Contents

Introduction

Technical implementation
Limitations due to Mattermost’s design
What flavor of cryptography do we use?

Demo

The webapp integrity problem

7/26

Limitations due to Mattermost’s design

Things hard to do with the current interface

▶ Notifications in encrypted messages
▶ No easy way to reuse the existing mechanisms from a plugin

▶ Encryption of attachments (e.g. images)
▶ Hard to make it transparent for the end user (e.g. on-the-fly decryption of attached images)

▶ Encrypted messages modification...
▶ ...that is unstable between Mattermost versions 1

▶ Peer-to-peer key exchange protocols
▶ Searchable encryption
▶ Many small UI/UX details

1github.com/quarkslab/mattermost-plugin-e2ee#unable-to-update-messages-mattermost--61---64 8/26

github.com/quarkslab/mattermost-plugin-e2ee#unable-to-update-messages-mattermost--61---64

Limitations due to Mattermost’s design

Sticking to the plugin interface?

Why not modify Mattermost directly?

▶ Far more complex maintenance and deployment scenarios (recurrent rebase, docker
image builds, etc...)

▶ The plugin interface provides an easy-to-deploy experience for the end-users (just
upload a .tar.gz to your instance)

9/26

Table of Contents

Introduction

Technical implementation
Limitations due to Mattermost’s design
What flavor of cryptography do we use?

Demo

The webapp integrity problem

10/26

Group messaging

There are several ways to do group messaging (cf our blogpost):
▶ one shared symmetric channel key
▶ a channel is just many subchannels of two
▶ the soon-to-be standardized MLS protocol

⇒ we use the P2P mode (like Signal), with an ephemeral Diffie-Hellman key exchange for
each message (not like Signal)

11/26

Group messaging

There are several ways to do group messaging (cf our blogpost):
▶ one shared symmetric channel key
▶ a channel is just many subchannels of two
▶ the soon-to-be standardized MLS protocol

⇒ we use the P2P mode (like Signal), with an ephemeral Diffie-Hellman key exchange for
each message (not like Signal)

11/26

Overview

Steps performed when sending a message:

1. generate a random key and encrypt the message;

2. for each recipient, compute a shared key to encapsulate the message key;

3. sign the context/public values and the encrypted message;

4. send everything necessary;

5. wait for the reactions to your awesome joke.

12/26

Overview

Steps performed when sending a message:

1. generate a random key and encrypt the message;

2. for each recipient, compute a shared key to encapsulate the message key;

3. sign the context/public values and the encrypted message;

4. send everything necessary;

5. wait for the reactions to your awesome joke.

12/26

Overview

Steps performed when sending a message:

1. generate a random key and encrypt the message;

2. for each recipient, compute a shared key to encapsulate the message key;

3. sign the context/public values and the encrypted message;

4. send everything necessary;

5. wait for the reactions to your awesome joke.

12/26

Overview

Steps performed when sending a message:

1. generate a random key and encrypt the message;

2. for each recipient, compute a shared key to encapsulate the message key;

3. sign the context/public values and the encrypted message;

4. send everything necessary;

5. wait for the reactions to your awesome joke.

12/26

Overview

Steps performed when sending a message:

1. generate a random key and encrypt the message;

2. for each recipient, compute a shared key to encapsulate the message key;

3. sign the context/public values and the encrypted message;

4. send everything necessary;

5. wait for the reactions to your awesome joke.

12/26

Public-key cryptography 101

Quick reminder:

symmetric cryptography (e.g. AES) the same key is used to encrypt and decrypt

asymmetric cryptography (e.g. RSA), we have two keys: the public key is used to encrypt,
and the private key to decrypt; anyone can encrypt a message but only one
person can decrypt it

digital signatures same idea, other way around: only the person who has the
secret/signing key can sign, and everyone can use the public/verification key
to check

Best of both worlds
Public-key cryptography has a high computational cost, so we usually encrypt the message
with a symmetric key (much more efficient), then use public-key cryptography to encrypt
that key: this is called hybrid cryptography.

13/26

Public-key cryptography 101

Quick reminder:

symmetric cryptography (e.g. AES) the same key is used to encrypt and decrypt

asymmetric cryptography (e.g. RSA), we have two keys: the public key is used to encrypt,
and the private key to decrypt; anyone can encrypt a message but only one
person can decrypt it

digital signatures same idea, other way around: only the person who has the
secret/signing key can sign, and everyone can use the public/verification key
to check

Best of both worlds
Public-key cryptography has a high computational cost, so we usually encrypt the message
with a symmetric key (much more efficient), then use public-key cryptography to encrypt
that key: this is called hybrid cryptography.

13/26

Public-key cryptography 101

Quick reminder:

symmetric cryptography (e.g. AES) the same key is used to encrypt and decrypt

asymmetric cryptography (e.g. RSA), we have two keys: the public key is used to encrypt,
and the private key to decrypt; anyone can encrypt a message but only one
person can decrypt it

digital signatures same idea, other way around: only the person who has the
secret/signing key can sign, and everyone can use the public/verification key
to check

Best of both worlds
Public-key cryptography has a high computational cost, so we usually encrypt the message
with a symmetric key (much more efficient), then use public-key cryptography to encrypt
that key: this is called hybrid cryptography.

13/26

Diffie-Hellman

Keys

▶ Adrien has private key d, public key gd, Angèle has (n,gn);
▶ Adrien sends gd, Angèle sends gn;
▶ Adrien compute k = (gn)d, Angèle computes k = (gd)n;
▶ we can each use k to encrypt/decrypt a message

In the ephemeral setting, Angèle will generate a new n randomly for each message that
she sends, but always use Adrien’s long-term gd.

14/26

Diffie-Hellman

Keys

▶ Adrien has private key d, public key gd, Angèle has (n,gn);
▶ Adrien sends gd, Angèle sends gn;
▶ Adrien compute k = (gn)d, Angèle computes k = (gd)n;
▶ we can each use k to encrypt/decrypt a message

In the ephemeral setting, Angèle will generate a new n randomly for each message that
she sends, but always use Adrien’s long-term gd.

14/26

Encryption

For each recipient, we have a public ECDH key (P-2562).
▶ Randomly generate AES128-CTR key+IV, and encrypt the message

▶ Key is encapsulated with AES-KW

2Because we use WebCrypto to have non-extractable keys. 15/26

Encryption

For each recipient, we have a public ECDH key (P-2562).
▶ Randomly generate AES128-CTR key+IV, and encrypt the message
▶ Key is encapsulated with AES-KW

▶ the sender generates one ephemeral ECDH key,
▶ computes the shared keys between that key and the recipients’ ECDH keys,
▶ the shared key is hashed with SHA256 and used to encapsulate the message key

2Because we use WebCrypto to have non-extractable keys. 15/26

Encryption

For each recipient, we have a public ECDH key (P-2562).
▶ Randomly generate AES128-CTR key+IV, and encrypt the message
▶ Key is encapsulated with AES-KW

In the end, the encypted message structure contains:

[IV,pubECDHE,[wrappedKey0,...,wrappedKeyn],encryptedMsg,signature]

2Because we use WebCrypto to have non-extractable keys. 15/26

Signature

Each recipient knows the verification ECDSA key (P-256) of the sender, who signs:
▶ IV and public ECDHE key;
▶ number of recipients and ordered public key IDs;
▶ length of the message, and the encrypted message

16/26

Visual summary

msg AES-CTR ctxt

IV KskE, pkE

pk0

pkn

...

ssk0

sskn

...

wk0

wkn

...

ECDH

AESKW
#

#

17/26

Visual summary

msg AES-CTR ctxt

IV KskE, pkE

pk0

pkn

...

ssk0

sskn

...

wk0

wkn

... nb

len

ECDH

AESKW
#

#

17/26

Visual summary

msg AES-CTR ctxt

IV KskE, pkE

pk0

pkn

...

ssk0

sskn

...

wk0

wkn

...

sign

ECDH

AESKW
#

#

17/26

A quick note on security

Here is what the attacker can do depending on the known secrets:

secret implication
K can only decrypt current message

skECDHE can only decrypt current message
skECDH can decrypt all messages received by user
skECDSA can impersonate user and send messages

tl;dr cryptanalysis on messages is useless, need to compromise users’ devices

18/26

Table of Contents

Introduction

Technical implementation
Limitations due to Mattermost’s design
What flavor of cryptography do we use?

Demo

The webapp integrity problem

19/26

Table of Contents

Introduction

Technical implementation
Limitations due to Mattermost’s design
What flavor of cryptography do we use?

Demo

The webapp integrity problem

20/26

The webapp integrity problem

An attack scenario
In the attack model where the server isn’t trusted / is compromised:
▶ Modified Javascript can be shipped to a targeted end user
▶ That javascript could leak the original, unencrypted message to a third party
▶ ⇒ Defeats the whole end-to-end encryption system

Who else has this problem?

▶ Every webapp doing client-side cryptography (e.g. cryptpad (!), protonmail, ...)
▶ Signal: one of the reasons why there’s only an Electron app 3

▶ Whatsapp: browser plugin to verify code for web.whatsapp.com 4

3https://mobile.twitter.com/moxie/status/1347351631420014592
4https://engineering.fb.com/2022/03/10/security/code-verify/ 21/26

web.whatsapp.com
https://mobile.twitter.com/moxie/status/1347351631420014592
https://engineering.fb.com/2022/03/10/security/code-verify/

The webapp integrity problem

Subresource integrity?

<script type="text/javascript" src="main.js" integrity="sha384-oqVuAfXRKap7fdg...">

▶ The browser validates all sub resources (CSS/JS) against known hashes
▶ Originally design to be able to load these resources from untrusted CDNs

Searching for a root-of-trust

▶ Even with SRI on all subresources, we need to trust the overall HTML...
▶ ...so we need a Root-of-Trust!
▶ How?

22/26

The webapp integrity problem: service
workers?

TOFU with Service Workers

▶ Service workers can intercept requests client-side before they are interpreted by the
browser

▶ We could ship a service worker with an embedded Root-of-Trust (TOFU), and verify
HTML pages
▶ We can even enforce SRI for all subresources from the service worker itself

How to trust the service worker?
▶ Problem: a service worker can’t intercept request to gather service workers

themselves
▶ But it could work with SRI for Service Workers!

navigator.serviceWorker.register('sw.js', { integrity: 'sha384-XXXX' })

23/26

Conclusion

Some takeaways:
▶ we built a plugin for Mattermost to ensure more security
▶ we provide privacy, authenticity, and integrity of the messages
▶ works very well, but we still faced some limitations
▶ Apache license

You can find more details on our blog.quarkslab.com and on the
github.com/quarkslab/mattermost-plugin-e2ee

24/26

Links

Blogposts on secure messaging:
https://blog.quarkslab.com/secure-messaging-apps-and-group-protocols-part-1.html
https://blog.quarkslab.com/secure-messaging-apps-and-group-protocols-part-2.html

Blogpost on the plug-in:
https://blog.quarkslab.com/mattermost-end-to-end-encryption-plugin.html

GitHub of the plugin:
https://github.com/quarkslab/mattermost-plugin-e2ee/blob/main/docs/design.md

25/26

https://blog.quarkslab.com/secure-messaging-apps-and-group-protocols-part-1.html
https://blog.quarkslab.com/secure-messaging-apps-and-group-protocols-part-2.html
https://blog.quarkslab.com/mattermost-end-to-end-encryption-plugin.html
https://github.com/quarkslab/mattermost-plugin-e2ee/blob/main/docs/design.md

Thank you
Contact information:

Email: contact@quarkslab.com

Phone: +33 1 58 30 81 51

Website: https://www.quarkslab.com

https://www.quarkslab.com

	Introduction
	Technical implementation
	Limitations due to Mattermost's design
	What flavor of cryptography do we use?

	Demo
	The webapp integrity problem

