

Building operating systems optimized for containers, from IoT to desktops and servers

Timothée Ravier CoreOS engineer at Red Hat

Usual caveats and warnings

- This talk is about **community projects** (i.e. not a product)
- Thus reflects **my opinions**
- But I believe the goals are **shared**
- I'm a **contributor** to some of the projects mentioned
 - and some of the underlying technologies used

Breaking News: Software has bugs (!)

- Memory safety issues, logic bugs
- Linux kernel vulnerabilities
- CVEs & **non** CVE fixes
- etc.

- Can't find them all, can't fix them all
- Can't "just" **rewrite** everything in <good language>

Travier@redhat.com

Well-known workarounds

- Update vulnerable software
- Focus on **bug classes** instead of single bugs
- Progressively introduce **better languages** in codebases

• Defense in depth:

- Use **just** what you need
- **Split** privileges
- Put as much as possible into a **sandbox**

Goal: Make workarounds usable

- Most users only use the **default** configuration
- Make the default behavior the **secure** option
 - No "secure configuration"
 - No "security focused" distribution
- Make updates a **non-event** and **enabled** by default
- Use a sandbox for **applications** by default

How can we do this?

Limits of package centered systems

- Securing classic **package based** distributions is hard
- Requires **expert knowledge** and time to set up
- Can not provide **at the same time**:
 - lots of packages
 - secure by default packages
- Must select a **smaller** default set
 - Part of attack surface reduction

Travier@redhat.com

Moving to image based distributions

- Provide a **curated set** of packages by default
- Every system is **the same** for a given version
- Makes **testing** and **reproducing** issues easier
- Updates are **atomic**
- But what do we **create** those images from?

Travier@redhat.com

Taking a look at the Fedora Project

- Provides a **stable** and **up to date** software stack
- New release approximately every **six months**:
 - Mostly **security fixes** for stable releases
 - Major **new features** go into the next release
- **Upstream first** for patches and configuration changes

ostree & rpm-ostree: Bridging the gap

- Hybrid image/package system with **atomic upgrades**
- Kind of like **Git** for your operating system
- Create "images" from **existing** packages
- Client side **package layering** and overrides:
 - Add, remove or replace packages **locally**
- Operations are **atomic**, **safe** and **easy to rollback**

OS versioning and filesystem layout

- A **single identifier** for a given system version
 - Example: 36.20220605.3.0
- Uses **read-only** filesystem mounts:
 - Prevents accidents, basic attacks and **real vulnerabilities**
- Clear distinction between:
 - ✓ **/usr** □ distribution content (from packages)
 - /etc □ system configuration (defaults from packages)
 - /var □ all local system and user content

Where is this happening?

rpm-ostree based Fedora variants

- Each variant is focused on a specific **use case**
- Varying degree of progress toward the stated goals

Travier@redhat.com

Common ground for all variants

- Built 100% from Fedora RPM packages
- System managed by **rpm-ostree**
- Most applications are run in **containers**:
 - Podman is included by default
- Enables **decoupling** applications and system updates

Containers & security by default

- Confinement with **SELinux**:
 - **Confined** system services (targeted policy)
 - Isolation between containers and container ↔ host
 - Already **blocked** several real vulnerabilities in runc:
 - CVE-2019-5736: Latest container exploit (runc) can be blocked by SELinux
 - CVE-2021-30465: Mitigated by Default in OpenShift

What is Fedora IoT?

Fedora IoT

- Focused on **IoT** use cases:
 - industrial gateways
 - smart cities
 - analytics with AI/ML
 - a project at home
- Management with **Ansible**

Architectures and devices

- Support for **x86_64**, **aarch64** and **ARMv7**:
 - Only supports devices with **UEFI support**
 - SoCs supported by Fedora (requires **SBBR/EBBR**)
 - ARMv7 support will end with Fedora 37
- Some **example devices** include:
 - NVIDIA Jetson Xavier series
 - Compulabs Fitlet2
 - Solid-run Honeycomb and Hummingboards
 - Raspberry Pi series of devices

Security for IoT & Edge devices

- Building on top of **TPM2** devices:
 - Remote attestation with Keylime
 - Pin disk encryption to **TPM PCRs** with Clevis
- Auto-updates are configurable:
 - Setup Greenboot to enable automatic rollbacks
- **On-boarding** with Zezere:
 - Minimal touch on-boarding for a fleet of devices

F

Upcoming: Secure on-boarding

• FIDO Device Onboarding (FDO):

- Zero touch **secure provisioning** for IoT
- Based on FIDO specification
- Easily on-board a large number of devices
- Implemented entirely in **Rust** (client & server):
 - https://github.com/fedora-iot/fido-device-onboard-rs
- Planned for Fedora 37

F

What is Fedora CoreOS?

Fedora CoreOS

- Successor to two **container-first** OSes:
 - CoreOS Inc's Container Linux
 - Fedora Atomic Host (from Project Atomic)
- Incorporates ideas from both:
 - Provisioning stack & cloud native expertise (CL)
 - Fedora foundation, update stack & SELinux (FAH)
- Focused on **single node** and **clusters** use cases

Travier@redhat.com

Philosophy

- Automatic updates by default
 - No interaction for administrators
- Automated provisioning
 - All nodes start from **same starting point**
 - Use Ignition to provision a node on **first boot**
- Immutable infrastructure
 - Automate deployment and system configuration
 - Update configs and **re-provision** to apply changes

Platforms and architectures

- Available for a plethora of **cloud/virt platforms**:
 - Alibaba, AWS, Azure, Azure Stack, DigitalOcean,
 Exoscale, GCP, IBM Cloud, OpenStack, Nutanix, Vultr,
 VirtualBox, VMware, QEMU/KVM
 - Directly launchable on AWS & GCP
- Several options for **Bare Metal**:
 - Live ISO, PXE (network) boot, 512b/4K native disk images
- Support for **x86_64**, **aarch64** and **s390x**

Reducing the OS footprint

- First step in security hardening: **reducing** attack surface
 - Less software to **track** for security and bug fixes
- Only **essential** system services and administration tools
- Two **container runtimes**: podman & moby-engine
- Only includes Bash: no Python, etc.

Building with safer languages

- Using memory safe languages for most of Fedora CoreOS specific additions:
 - **Go**: Butane, Ignition, toolbx, container engines (podman & moby-engine)
 - **Rust**: Afterburn, Zincati, coreos-installer, bootupd,
 rpm-ostree (in progress), Cincinnati

Fedora CoreOS examples

- Single node Matrix server:
 - https://github.com/travier/fedora-coreos-matrix
- Nomad cluster:
 - https://github.com/travier/fedora-coreos-nomad
- Kubernetes cluster with OKD:
 - https://www.okd.io/installation/

What are Fedora Silverblue & Kinoite?

Fedora Silverblue & Fedora Kinoite

- Desktop variants with Wayland and Pipewire
- Fedora **Silverblue**:
 - Featuring the **GNOME** desktop
 - Following the work on Fedora Workstation
- Fedora **Kinoite**:
 - Featuring the **KDE Plasma** desktop
 - Following the work on the KDE Spin

Easy desktop experience for users

- **rpm-ostree** makes system updates a non-event
 - Prepared in the background
 - Applied on reboot
 - Instant rollback when facing issues
- Work in progress in GNOME Software and Plasma Discover to make them **easier to manage**
- End goal is to make them **"transparent"**

More sandboxed applications

- Applications shipped as Flatpaks

 Installation and updates independent of system operations
- More and more applications use **Portals**
 - Thus using a **strong sandbox**
 - X.org deprecation will remove the biggest hole in the sandbox
- Major applications **providers**:
 - **Fedora** (FOSS only)
 - Flathub (mixed FOSS and proprietary)

Development in and with containers

- Use containers to create **mutable environments** that are independent of the system
- Install any package, development tools, IDEs, etc.
- Not a security boundary: a lot is shared with the host
- **toolbx:** Currently Fedora focused but other distributions are planned

• **Distrobox:** Works with most Linux distributions

Future security improvements

Future work: Runtime integrity for ostree

- **rpm-ostree** checks integrity at update time
- Then relies on **filesystem** or **block device** integrity
- Work in progress: **composefs**
 - new "virtual" filesystem
 - modeled around ostree repo format
 - based on **fs-verity**
 - enables "at access time" integrity checks

Future work: Boot attestation

- Integrate **Keylime** (in Rust) into other variants (already in IoT):
 - **remote boot attestation** for server use cases
 - local boot attestation for desktops (see also tmptotp)

- Improving the user experience with **TPM pinned encryption**:
 - Make Clevis (and Tang) easier for desktops
 - Installer changes and user story for **recovery**

Get involved!

- Fedora IoT: https://getfedora.org/iot/
- Fedora CoreOS: https://getfedora.org/coreos
- Fedora Silverblue: https://silverblue.fedoraproject.org/
- Fedora Kinoite: https://kinoite.fedoraproject.org/

