
Pass The SALT 2022

Building on top of Scapy:
what could possibly go wrong?

Julien Bedel & Claire Vacherot

Building on top of Scapy: what could possibly go wrong?

C
V

whoami

Claire Vacherot

Senior pentester @ Orange Cyberdefense Lyon

►Industrial networks and devices security

►I like to write tools

►Speaker @ GreHack 2020, Defcon 2021

2

Best

conference

(with PTS)

Building on top of Scapy: what could possibly go wrong?

Tried to fit Scapy

into our existing tool

Hard time, learned a lot

TL;DR

3 Building on top of Scapy: what could possibly go wrong?

Building on top of Scapy: what could possibly go wrong?

Previously…
Using or not using Scapy

Tricks, workarounds and headaches

Wrap up

Building on top of Scapy: what could possibly go wrong?

BOF (Boiboite Opener Framework)

Python library to discover, interact & test via several industrial network protocols

from bof.layers.chicken import *

chickennet = ChickenNet().connect("192.168.1.242")

hello_req = ChickenPacket(type="hello request")

response, source = chickennet.sr(hello_req)

print("Remote IP:", response.ip_address)

chickennet.disconnect()

Remote IP: 192.168.1.242

Building on top of Scapy: what could possibly go wrong?

BOF (Boiboite Opener Framework)

Expected usage: misusing protocols, fuzzing

from bof.layers.chicken import *

chickennet = ChickenNet().connect("192.168.1.242")

hello_req = ChickenPacket(type="hello request")

hello_req.source_ip = "nope"

response, source = chickennet.sr(hello_req)

print("Remote IP:", response.ip_address)

chickennet.disconnect()

???

é è)

Building on top of Scapy: what could possibly go wrong?

Design: First try

Requirements: Add protocols, alter packets, deviate from protocol specifications

7

Building on top of Scapy: what could possibly go wrong?

Design: First try

Requirements: Add protocols, alter packets, deviate from protocol specifications

8

JSON

Building on top of Scapy: what could possibly go wrong?

Design: First try

Requirements: Add protocols, alter packets, deviate from protocol specifications

9

JSON

"CRI": [

{"name": "structure length", "type": "field", "size": 1, "is_length": true},

{"name": "cri connection type code", "type": "field", "size": 1, "default": "03"},

{"name": "connection data", "type": "depends:cri connection type code"}

],

Building on top of Scapy: what could possibly go wrong?

"CRI": [

{"name": "structure length", "type": "field", "size": 1, "is_length": true},

{"name": "cri connection type code", "type": "field", "size": 1, "default": "03"},

{"name": "connection data", "type": "depends:cri connection type code"}

],

Yes but…

►Field size in bytes

►Dirty workaround

10

{"name": "address type, hop count, extended frame format", "type": "field", "size": 1,

"bitsizes": "1, 3, 4"},

Building on top of Scapy: what could possibly go wrong?

"CRI": [

{"name": "structure length", "type": "field", "size": 1, "is_length": true},

{"name": "cri connection type code", "type": "field", "size": 1, "default": "03"},

{"name": "connection data", "type": "depends:cri connection type code"}

],

Yes but…

►Conditional fields

►Length fields to adapt

►Nested "depends"

►A depending on B, B depending on C, C depending on A

11

Building on top of Scapy: what could possibly go wrong?

And also…

►Varying number of fields

►Optional fields

►Fields with unpredictable sizes

►Type management (strings, integers, arrays, …)

12

... "optional": true}

... "repeat": true}

???

???????????

Building on top of Scapy: what could possibly go wrong?

And also…

►Varying number of fields

►Optional fields

►Fields with unpredictable sizes

►Type management (strings, integers, arrays, …)

13

... "optional": true}

... "repeat": true}

???

???????????

Building on top of Scapy: what could possibly go wrong?

And also…

►Varying number of fields

►Optional fields

►Fields with unpredictable sizes

►Type management (strings, integers, arrays, …)

14

... "optional": true}

... "repeat": true}

???

???????????

Building on top of Scapy: what could possibly go wrong?

And also…

►Varying number of fields

►Optional fields

►Fields with unpredictable sizes

►Type management (strings, integers, arrays, …)

15

... "optional": true}

... "repeat": true}

???

???

Building on top of Scapy: what could possibly go wrong?

And also…

►Varying number of fields

►Optional fields

►Fields with unpredictable sizes

►Type management (strings, integers, arrays, …)

16

... "optional": true}

... "repeat": true}

???

???

Building on top of Scapy: what could possibly go wrong?

Previously…

Using or not using Scapy
Tricks, workarounds and headaches

Wrap up

Building on top of Scapy: what could possibly go wrong?

Scapy

Powerful interactive packet manipulation program

►Send, sniff and dissect and forge network packets

►Packets as layers that are stacked one upon another

>>> pkt = IP(dst=“192.168.1.242”)/TCP(dport=1664)/Chicken(sound=“cluck cluck”)

>>> pkt.show2()

###[IP]###

[...]

###[TCP]###

[...]

###[Chicken]###

length = 5

type = Bresse

sound = 'cluck cluck'

Building on top of Scapy: what could possibly go wrong?

Layers

►Protocol implementations as layers

►A lot of existing ones, easy* to add new ones * "If […] the protocol is not too brain-damaged […]”

19

class Chicken(Packet):

name = "Chicken"

fields_desc = [

ByteField("length", None),

IntEnumField("type", 1, {1: "Bresse", 2: "Berry", 3: "Bastard"}),

StrField("sound", "")

]

def post_build(self, p, pay):

p = (len(p)).to_bytes(1, byteorder='big') + p[1:]

return p + pay

Building on top of Scapy: what could possibly go wrong?

So close but so far away

20

Scapy has BOF also needs

Mandatory field types …optional field types

Protocol specification reliance …not to rely on them

Simple usage and clear syntax …a dedicated syntax

Building on top of Scapy: what could possibly go wrong?

Thought about it a lot…

Keep BOF?

Keep Scapy?

Keep both?

21

Building on top of Scapy: what could possibly go wrong?

Thought about it a lot…

… and ended up writing a wrapper \o/

►Keep BOF usage / syntax

►Make use of Scapy’s strength

►Without altering Scapy itself

22

To support

updates

Building on top of Scapy: what could possibly go wrong?

Result

23

Building on top of Scapy: what could possibly go wrong?

Result

24

Building on top of Scapy: what could possibly go wrong?

Previously…

Using or not using Scapy

Tricks, workarounds and headaches
Wrap up

Building on top of Scapy: what could possibly go wrong?

BOF’s behavior

26

pkt = bof.ChickenPacket()

pkt.type = 1

pkt.sound = "whatever"

print(raw(pkt))

pkt.show2()

b'\r\x00\x00\x00\x01whatever'

###[Chicken]###

length = 5

type = Bresse

sound = 'whatever'

Building on top of Scapy: what could possibly go wrong?

BOF’s behavior

27

pkt = bof.ChickenPacket()

pkt.type = "yeah"

pkt.sound = "whatever"

print(raw(pkt))

pkt.show2()

b'\ryeahwhatever'

###[Chicken]###

length = 13

type = b'yeah'

sound = 'whatever'

Not saying that

doing this

makes sense

Building on top of Scapy: what could possibly go wrong?

Scapy’s behavior

28

ValueError: Incorrect type of value for field type:

struct.error('required argument is not an integer')

To inject bytes into the field regardless of the type, use RawVal. See help(RawVal)

pkt = scapy.Chicken()

pkt.type = "yeah"

pkt.sound = "whatever"

print(raw(pkt))

pkt.show2()

Building on top of Scapy: what could possibly go wrong?

Scapy’s behavior

29

►Good point but RawVal has fewer features (from scapy/fields.py):

class RawVal:

def __init__(self, val=b""):

def __str__(self):

def __bytes__(self):

def __len__(self):

def __repr__(self):

class Field(Generic[I, M]):

__slots__ = ["name", "fmt", "default", "sz",

"owners", "struct"]

def h2i(self, pkt, x):

def i2h(self, pkt, x):

def m2i(self, pkt, x):

def i2m(self, pkt, x):

def any2i(self, pkt, x):

def i2repr(self, pkt, x):

def addfield(self, pkt, s, val):

def getfield(self, pkt, s):

def copy(self):

def randval(self):

[...]

Building on top of Scapy: what could possibly go wrong?

Quick reminder

30

Internal Machine Human

https://scapy.readthedocs.io/en/latest/build_dissect.html

Build

Dissect

Packet().fields_desc[:] b'\r\x00\x00\x00\x01whatever' sound = 'whatever'

Show

https://scapy.readthedocs.io/en/latest/build_dissect.html

Building on top of Scapy: what could possibly go wrong?

Scapy vs. BOF

31

Scapy has BOF also needs

Mandatory field types …optional field types

Protocol specification reliance …not to rely on them

This is probably

why Scapy works

so well, duh

Fields always calculated

from the packet

Fields sometimes disconnected

from the packetI M

Building on top of Scapy: what could possibly go wrong?

Scapy vs. BOF

32

Why not just change Machine representation?

Disconnected from Internal, breaks Human…

►Loose Scapy’s capabilities

Building on top of Scapy: what could possibly go wrong?

Scapy vs. BOF

33

Why not just change Machine representation?

Disconnected from Internal, breaks Human…

►Loose Scapy’s capabilities

Let’s mess with internals \o/

Building on top of Scapy: what could possibly go wrong?

"It is a strange fate that we should suffer so much
fear and doubt over so small a thing."

34

pkt = bof.ChickenPacket()

pkt.type = "yeah"

pkt.sound = "whatever"

print(raw(pkt))

pkt.show2()

b'\ryeahwhatever'

###[Chicken]###

length = 13

type = b'yeah'

sound = 'whatever'

Building on top of Scapy: what could possibly go wrong?

Interface with Scapy

35

pkt.type pkt.scapy_pkt.type

pkt.type = "yeah"

Python internals Call to pkt’s __getattr__() / __setattr__() method

Building on top of Scapy: what could possibly go wrong?

Interface with Scapy

36 Building on top of Scapy: what could possibly go wrong?

Building on top of Scapy: what could possibly go wrong?

Not as straightforward

37

Loop through fields for some_field

value compatible with field?

– Yes : somefield = value

– No : *dramatic music*

https://github.com/Orange-Cyberdefense/bof

/blob/master/bof/packet.py

some_field = search_scapy_field()

do_something_on_field()

https://github.com/Orange-Cyberdefense/bof/blob/master/bof/packet.py
https://github.com/Orange-Cyberdefense/bof/blob/master/bof/packet.py

Building on top of Scapy: what could possibly go wrong?

Dynamically changing types

1. Loop through fields for pkt.type

2. value compatible with field?

– Yes : pkt.type = value

– No : Replace fields_desc[1] with ByteField("yeah") ???

38

pkt.type = "yeah"

fields_desc = [

ByteField("length", None),

IntEnumField("type", 1, {1: "Bresse", 2: "Berry", 3: "Bastard"}),

StrField("sound", "")

Building on top of Scapy: what could possibly go wrong?

Yes but…

►fields_desc as class attribute

39

class Sandwich(Packet):

fields_desc = [

"Salad",

"Tomato",

"Onion"

]

first, second = Sandwich(), Sandwich()

second.fields_desc[1] = "Camembert"

first: Salad, Camembert, Onion

second: Salad, Camembert, Onion

Building on top of Scapy: what could possibly go wrong?

1. Clone Scapy Packet object (!= copy)

2. Replace fields_desc[1] with ByteField("yeah") in new class

Dynamically changing types

40

Chicken

ByteField("length"),

IntEnumField("type"),

StrField("sound")

Chicken_<randint>

ByteField("length"),

ByteField("type"),

StrField("sound")

self._clone()

Building on top of Scapy: what could possibly go wrong?

It’s useless but it works!

41

pkt = ChickenPacket()

pkt.type = "yeah"

pkt.sound = "whatever"

print(raw(pkt))

pkt.show2()

b'\ryeahwhatever'

###[Chicken]###

length = 13

type = b'yeah'

sound = 'whatever'

Building on top of Scapy: what could possibly go wrong?

Others things that we can do

►Add, remove, resize fields in packets

►More ways to access and update fields

►Proxy with additional attributes, methods and properties

42

Not saying that

doing this

makes sense

>>> pkt.ip_address

'192.168.1.1'

>>> pkt["ip_address"]

b'\xc0\xa8\x01\x01'

Building on top of Scapy: what could possibly go wrong?

From BOF to Scapy

43

Workarounds to handle

design choices and

special cases

Proxy relying on

Python builtins

It works!

Additional Scapy stuff

implemented when needed

Building on top of Scapy: what could possibly go wrong?

Previously…

Using or not using Scapy

Tricks, workarounds and headaches

Wrap up

Building on top of Scapy: what could possibly go wrong?

Wrap up

Use of previous work

and taking time for design

may have saved us time

45 Building on top of Scapy: what could possibly go wrong?

Building on top of Scapy: what could possibly go wrong?

Wrap up

46

(== RTFM because Scapy = and Python =)

Building on top of Scapy: what could possibly go wrong?

Don’t just use the tools

understand their true power

make the most of it

Building on top of Scapy: what could possibly go wrong?47

Thank you

Enjoy PTS!

