

RF Signal Hunting

With the help of ML and DL

About me

Founder of Penthertz

- Sébastien Dudek (<u>@FlUxluS</u>)
- > 10 years of experience in Software / Hardware security
 - Former Sogeti ESEC R&D as a researcher
 - and Synacktiv as a pentester + vulnerabilities researcher
- Specialized in Wireless communications
- Also, security researcher <u>@Trend Micro</u>
 - Industrial IoT
 - Mobile and other RF/SDR things...

Penthertz

((((()))

Main activities

Security assessments

- Wireless communications (RFID, Wi-Fi, Mobile communication, Bluetooth, etc.)
- Embedded devices
- Backend servers
- Red Team

Trainings

- Software-Defined Radio
 Hacking
- Wi-Fi Red teaming
- RFID Hacking
- Mobile attacks (2G/3G/4G/5G)

Hardware security

- Firmware extraction
- Chip-off
- Secrets extraction
- Libraries analysis
- Vulnerability hunting

About me

Part of our RF lab (wow clean desk)

RF Signal

66

We just have these mysterious electromagnetic waves that we cannot see with the naked eye. But they are there.

.....

Heinrich Hertz

Risks OTA

Common vulnerabilities:

- Eavesdropping
- Replay
- Injection
- Relay
- Jamming
- DoS via (very) high amplitude transmission

• etc.

Radio wave characteristics

Important:

- λ : wavelength in meter
- c: celerity of light (3.108 m.s⁻¹)
- T: the period in seconds ()
- f: frequency in Hz $(\frac{1}{T})$

RF Signal

Wave regions

penthertz.com

Spectrum analyzers

- A starting beast:
 - R&S® FSV40
 - 10 Hz to 40 GHz freq band
 - 160 MHz signal analysis bandwidth
 - costs > 43 000€

RF Explorer

- A handy gadget for < 300€:
 - Left SMA port (WSUB1G): 240-960MHz
 - Right SMA port (WSUB3G): 15-2700 MHz
 - Resolution bandwidth (RBW): automatic 3Khz to 600Khz

With SDR

- Famous software:
 - GQRX on Linux and Mac OS X
 - HDSDR on Windows
 - SDR# on Windows
 - SDR++ on Linux and Windows

Software-Defined Radio

- Before SDR \rightarrow difficult to get equipment without \$\$\$
- Made radio more accessible
- Hardware:
 - Signal acquisition \rightarrow IF;
 - ADC/DAC conversion;
 - RF Amp.;
 - and filtering.
- The rest is done in software
 - With your computer

Cheap SDR: RTL-SDR

- RTL-SDR
- Does only RX
- Different tuners/versions:
 - e.g. Elonics E4000 \rightarrow 52-2200 MHz
- Costs from 15€
- RTL-SDR v3 is about 50€
- Good for a beginning

More than 100 SDR

C 🕯 en.wikipedia.org/wiki/List_of_software-defined_radios																
and and a	Level Not logged in Talk Contributions Create account Log in															
α W S	Article Talk										Read	Edit View his	story Searc	h Wikipedia	L	Q
WIKIPEDIA The Free Encyclopedia	List of software-defined radios															
ine rice zne yelopedia	From Wikipedia, the free	From Wikipedia, the free encyclopedia														
Main page Contents	This article provides a list of commercially available software-defined radio receivers.															
Current events Random article About Wikipedia Contact us	Name 🗘	Туре 🗢	Frequency range	Max bandwidth	RX ADC \$ bits	TX DAC \$ bits	TX capable ◆	Sampling rate	Frequency accuracy ppm	Panadapters / Receivers	Host Interface	• Windows •	Linux 🕈	Mac 🗢	FPGA 🕈	Base price 🗢
Donate Contribute Help Learn to edit Community portal Recent changes Upload file Tools What links here Related changes Special pages Permanent link Page information Cite this page Wikidata item Print/export	Aaronia SPECTRAN V6 ^[1]	Pre-built	10 MHz – 6 GHz (planned modules for 9 kHz – 20 GHz; 9 kHz – 40 GHz, and 9 kHz – 64 GHz)	Up to 490 MHz (2 Rx with 245MHz each)	16	14	Yes	2 GSPS	0.005 (OCXO option)	2/1/3	Embedded or True IQ data via 2 x USB 3.2 Gen1, 1 x USB 3.1 GEN2 (power only), Internet remote via RTSA Software	Yes	Yes	Yes	XC7A200T-2 (930 GMACs)	€3,498
	ADAT ADT-200A ^[2]	Pre-built	10 kHz – 30 MHz (planned modules for 50 – 54 MHz, 70.0 – 70.5 MHz, and 144 – 148 MHz)	0.5 – 100 kHz	?			?		1/3	Embedded system (no computer needed), USB, Internet remote	Yes, with option R-1 & ADAT Commander	?	?		CHF 5,220
	AD-FMCOMMS2- EBZ ^[3]	Pre-built	2400 – 2500 MHz		12	12	Yes	61.44 MSPS		2/2	FMC (to Xilinx board) then USB 2.0 or Gigabi Ethernet.	Yes	Yes	Yes		US\$750
Download as PDF				E4 MUz duo to							FMC (to Xilinx board)					

A lot of characteristics to look at: TX/RX, full/half-duplex, max. samp. rate, clock stability, interface, freq range, software support, etc.

Issues

- How to identify the right technology?
 - Identify the frequency range
 - Used bandwidth
 - Duty cycle
 - Pattern
 - Other spectral properties
- But with what tools?

E.g.: FFT

And then?

- We need a database:
 - Own collection
 - Public resources: like sigidwiki.com

Don't have time!

- Making my database
- Fetching samples from Sigwiki and others
- Matching collections
- All of that manually

- But what if are lazy?

SDR and IQ

Penthertz

ML & DL

Me beginning in machine learning

Machine learning

- Science → learn from data
- Used to simplify complex rules applications: e.g. "spam filter"

Source: <u>A Machine Learning Approach to Road Surface Anomaly Assessment Using</u> <u>Smartphone Sensors</u> when you put pepper in water then use dishwashing liquid to push the pepper apart

Machine learning types

- Can be:
 - Supervised: feed the algo with desired solution → labels
 - Linear Regression
 - k-Nearest Neighbors
 - Logistic Regression
 - Super Vector Machines
 - Decision Trees and Random Forest
 - Neural Network

Machine learning types (2)

- Unsupervised:
 - Clustering (K-Means, DBSCAN, Hierarchical Cluster Analysis (HCA))
 - Anomaly detection and novelty detection (On-Class SVM, Isolation Forest)
 - Visualization (Kernel PCA, etc.)
 - Association rule learning (Apriori, Eclat)

Deep learning

- An application to Machine Learning
- Artificial neural network as a learning model
- Different kinds of layers

Image: UC Business Analytics R Programming Guide

penthertz

Good resources

- Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd Edition
- Coursera Machine learning and Deep Learning courses
- <u>https://towardsdatascience.com/</u>
- Etc.

Challenges

- Bad data
- Bad algorithm(s) in use
- Insufficient quantity of training data
- Noisy data
- Nonrepresentative set
- Overfitting
- Underfitting
- Etc.

A lot of chance to mess

DALL·E mini

AI model generating images from any prompt!

Model is as bad/good as your training set

- Need a lot of samples
- But filtered/clean samples
- Make a good balance between training and test sets
 - Warning! Test set always go at the end to test the model
 - Warning2: Careful with data and test splits
- Test different models \rightarrow Ensemble learning is a win!

Machine learning for signal classification

First capture we identified at an ISM frequency

- Doesn't tell a lot
- Need to zoom in to see the properties
- There are maybe multiple packets

First capture zoomed

- Better → observe changes in amplitude → ASK/OOK
- Need to extract some properties (we can also apply some sound techniques):
 - Zero Crossing Rate
 - Mel-Frequency Cepstral Coefficients (even if applied to sound)
 - Roll-Off Point (even if applied to sound)
 - Number of peaks
 - Spectral Centroid

ZCR : Zero Crossing Rate

$$ZCR = \frac{1}{2N} \sum_{n=1}^{N} |sign(x[n]) - sign(x[n-1])|$$

Number of peeks

penthertz

Our first list of features

```
import pandas as pd
x = armbutton_01_slice.real
column_names = ['zcr', 'spectral_c', 'peaks', 'label']
df = pd.DataFrame(columns = column_names)
def get_features(csignal, label):
    peaks, _ = find_peaks(csignal, height=0.99)
    return (len(np.where(np.diff(np.sign(csignal)))[0]), spectral_centroid(csignal), len(np.diff(peaks)), label)
df.loc[0] = get_features(x, "OOK")
df.head()
```

```
        C→
        zcr
        spectral_c
        peaks
        label

        0
        35720
        102043.176225
        183
        OOK
```

Making slices

penthertz

All features for OOK

C→		zcr	spectral_c	peaks	label
	0	35720	102043.176225	183	00K
	1	31570	112136.896603	286	OOK
	2	30196	104925.260302	372	OOK
	3	31894	107870.609573	303	OOK
	4	35140	107022.365464	237	OOK
	5	31257	106172.448807	328	OOK
	6	29946	108299.517874	301	OOK
	7	31224	106972.528967	328	OOK
	8	30409	106918.584870	383	OOK
	9	31027	104921.485225	328	OOK
	10	31304	102660.881477	296	OOK
	11	30050	104113.696990	333	OOK
	12	31473	101537.998925	258	OOK
	13	34870	103812.785526	248	OOK

FFT to reveal component

A simple low-pass filter would do the job !

Clean "packet" and it's abs

The signal can remain at default edge

Second capture : e.g. FSK

Use of SVM

- Results look great but can fail with more classes
- Need to test with != algorithms
- More data, of course
- But also, more features!


```
O
    from sklearn.svm import SVC
    from sklearn.model selection import validation curve
    model svm = SVC()
    model_svm.fit(X_train, y_train)
    print('Train score : ', model svm.score(X train,y train))
    print('Test score : ', model_svm.score(X_test,y_test))
    k = np.arange(1,31)
    tr_score_3, val_score_3 = validation_curve(model_svm, X_train, y_train, param_name='C', param_range=k_3, cv = 5)
    #5 splits sets de cross validation, on fait la moyenne des scores obtenus sur chacun des 5 splits
    train = model svm.predict(X train)
    predictions = model svm.predict(X test)
    plt.plot(k_3, val_score_3.mean(axis = 1), label = 'validation')
    plt.plot(k 3, tr score 3.mean(axis = 1), label = 'train')
    plt.ylabel('score')
    plt.xlabel('C')
    plt.legend()
□ Train score : 0.984375
    Test score : 0.9375
    <matplotlib.legend.Legend at 0x7f8ac3f7a390>
```


Random forest

Found a got hyperparameters

>	Fit	ting 3 fold	ls for each of 4 can	ndidates, tota	lling 12 f	its
		<pre>max_depth</pre>	<pre>min_samples_split</pre>	<pre>n_estimators</pre>	Accuracy	
	0	20.0	2	500	0.966667	
	1	20.0	2	4000	0.966667	
	2	NaN	2	500	0.966667	
	3	NaN	2	4000	0.966667	

 But accuracy to good to be true for large sets

CNN implementation

Convolutional Neural Network

Source: <u>https://medium.com/@RaghavPrabhu/understanding-of-convolutional-neural-network-cnn-deep-learning-99760835f148</u>

enthertz

Convolutional Neural Network (2)

- We can miss a lot of features when extracting them from a signal on our own
- It's possible to transform the signal to image for the OOK signal:

FSK to image

• We can notice a difference in the pattern:

Results

- With 80 samples each
- 25 Epochs

Model: "sequential"

==

• Following model:

Layer (type)	Output Shape	Param #
conv2d_1 (Conv2D)	(None, 314, 314, 64)	640
max_pooling2d_1 (MaxPooling 2D)	(None, 157, 157, 64)	0
flatten_1 (Flatten)	(None, 1577536)	0
dropout_1 (Dropout)	(None, 1577536)	0
dense_1 (Dense)	(None, 64)	100962368
dense_2 (Dense)	(None, 2)	130

=====

CNN

Details in the Jupyter notebook

Other applications: EM attacks

EM side channels

- Compromise electromagnetic emanations \rightarrow radiative coupling
- We try to infer what was computed
- Like power side channels \rightarrow HW emits EM radiation \rightarrow computation
 - Amplitude \rightarrow proportional to consumed power
 - Some computations require +/- power
 - In CMOS \rightarrow power is related to data being processed
- EM radiation \rightarrow leaks certain operations:
 - Operation of encryption
 - PIN/key pressed
 - Memory RW

Differential-mode radiation

- Loops formed by components (circuit traces, ribbon cables, etc.)
- Act like an antenna \rightarrow radiate
- Can be avoided with some shielding

Source : electronicdesign.com

Common-mode radiation

- Undesired internal voltage drops in the circuit
 - Generally, in the ground loop
- External cable act as an antenna
- Difficult to control and control

Direct emanations

- Provided straight by the wire transmitting sensitive data
- Faster is the transition → intense radiation

EM wave emitted at max frequency \rightarrow duration rise/fall time

Unintentional/Indirect Emanations

- Components are at short distance from each other
- Interaction with active electronic components \rightarrow induce new type of radiations
 - Modulations, and inter-modulations (frequency, phase, and amplitude)
 - And carrier signal (clock and its harmonics)
- Can be observed at greater distance than direct emanations → observing harmonics in different distances
- Which frequency?
 - Use of periodic activity T in second, f = 1/T
 - Other harmonics \rightarrow 2f, 3f, 4f, etc.
 - Can be modulated often in AM with another operating clock "fc" \rightarrow fc ± f, fc ± 2f, etc.

Side-channels applications

Side-channels applications

Side-channel attack on Ledger blue

By Thomas Roth, Josh Datko, Dmitry Nedospasov

penthertz.com

AES CEMA attack on Arduino Duemilanove

Performing Low-cost Electromagnetic Side-channel Attacks using RTL-SDR and Neural Networks by
Pieter Robyns

Pins to target for better signal

penthertz.com

Leakage Models

- Two common models:
 - <u>Hamming Weight Model</u> \rightarrow linear relation between the number of bits "1" and power

$$HW(D) = \sum_{j=0}^{n-1} d_j \quad \text{(D: input data, j bit, n: number of bits)}$$

• <u>Hamming Distance Model</u> \rightarrow make use of dynamic leakage

$HD(D,D') = HW(D \oplus D')$

(D and D' \rightarrow two input bytes/words)

Side-channel Attacks

- Main attacks:
 - SEMA: Simple Electromagnetic Analysis → comes from SPA (visual for RSA e.g., and template)
 - Template is often used in AES \rightarrow high frequency and noise
 - But need a similar device to characterize them and search space grow a lot when doing modeling leakage
 - DEMA & CEMA : Differential and Correlation Electromagnetic Analysis
 - <u>TVLA: Test Vector Assessment</u> → consisting of 1800 Welch's t-tests [18] knowing the plaintexts and the secret key.

DEMA & CEMA

Source: Far-field Correlation Electromagnetic Analysis attacks against AES in real-world applications F. van Tienen

penthertz.com

CEMA attack on AES

s/2931/robyns2019fosdem.pdf

penthertz

CEMA attack on AES (2)

https://archive.fosdem.org/2019/schedule/event/sdr_em_sidechannel_attacks/attac hments/slides/2931/export/events/attachments/sdr_em_sidechannel_attacks/slide s/2931/robyns2019fosdem.pdf

penthertz 67

penthertz.com

EMMA framework

Let's see: <u>https://github.com/rpp0/emma</u>

Conclusion

Lazy people gonna hate

- There is a magical algorithm for all datasets and purposes
 - Still a lot of work
 - Improve things within an Ensemble
 - It's good also to generate clean signals! → less noise to learn + more samples
- But we can also take some inspiration from some great work:
 - Enhanced Low SNR Radio Signal Classification using Deep Learning, AI Wireless 2020 in National Chiao Tung University
 - And other \rightarrow lot of GitHub projects

Thank You

Please contact us:

•••

. . .

- ⊠ contact@penthertz.com
- 🔇 +33 1 73 13 82 79
- penthertz.com