
Binbloom
Reloaded

Damien Cauquil | | PTS 2022 virtualabs

1

file:///home/virtualabs/qb/communication/PTS-22/slides/index.html?print-pdf

Introduction

3

Security Engineer (Quarkslab)

Hardware/software RE

Bluetooth Low Energy,

sometimes 😏

Who am I ?

4

A bit of context

Guillaume Heilles (PapaZours) published

binbloom in 2020

In 2021, he gave me some insights of binbloom

before leaving

A month after, I stumbled upon an unknown

�rmware ...

5

Unknown firmware, really ?

Designed for AArch64

64-bit architecture

No idea of its base address

Not supported by binbloom !

6

Wait, what's a base address ?

7

ELF file format

8

Loading address

9

Windows PE

10

ImageBase

11

Raw firmware

12

Finding a needle
in a haystack

14

Tools !

15

Basefind.py

Brute-force on 32-bit address space

for base in xrange(args.min_addr, args.max_addr, args.page_size):
 if base % args.page_size == 0:
 print "Trying base address 0x%x" % base
 score = 0
 for ptr in ptr_table.keys():
 if ptr < base:
 #print "Removing pointer 0x%x from table" % ptr
 del ptr_table[ptr]
 continue
 if ptr >= (base + size):
 continue
 offset = ptr - base
 if offset in str_table:
 score += ptr_table[ptr]

16

Tries every possible

o�set

Looks for pointers

pointing to text

strings

Count valid pointers

Brute-force

17

basefind.cpp

Same in CPP 😅

for(offset_t base = 0; base < 0xf0000000UL; base += 0x1000)
{
 [...]
}

18

rbasefind

Multi-threaded brute-force on 32-bit address

while current_addr <= interval.end_addr {
 let mut news = FnvHashSet::default();
 for s in strings {
 match s.checked_add(current_addr) {
 Some(add) => news.insert(add),
 None => continue,
 };
 }
 [...]
 match current_addr.checked_add(config.offset) {
 Some(_) => current_addr += config.offset,
 None => break,
 };
 pb.inc();
}

19

binbloom

Splits search space in segments

uint32_t p2(uint32_t x) {
 return 1 << (32 - __builtin_clz(x - 1));
}

/* ... */
size = read_file(filename, &firmware);
/* ... */
mask_segment = ~(p2(size) - 1);
mask_pointer = p2(size) - 1;
nb_segments = mask_segment;
while ((nb_segments & 1) == 0)
 nb_segments = nb_segments >> 1;
nb_segments++;

20

Computes distance

between strings

Looks for pointers with

same distance

B - A = o�set

No brute-force !

basefind2

21

So, limited tools.

Most of them perform a brute-force search on

32-bit address space

Most of them rely on text strings

None of them supports 64-bit architecture

(more than 1

14

 possibilities !)

22

Burning the haystack
to get the needle

24

1. Isolating data

25

Entropy can be used to

determine data segments

Data segments may contain

strings and pointers

Everything else is code

Telling data and code apart

26

Avoiding useless data

Do not consider long series of 0x00 or 0xFF

Generally present in unused areas or used as

�llers

27

Points of Interest

Text strings

Arrays of similar values

Functions (if possible)

28

2. Inferring base address

29

Inference vs. brute-force

30

Inference vs. brute-force

Search space is reduced

Works on both 32-bit and 64-bit arch �rmwares

Still a lot of candidates 😨

31

Memory & performances issues

Storing candidates in a list is not e�cient

Decided to use a tree rather than a list

32

Candidate addresses tree

33

Candidate addresses tree

Searching/storing only requires 8 operations

We can prune the tree to make room for new

candidates

34

Evaluating candidate addresses

looking for the address that will give the best

results

count valid pointers

Arrays of valid pointers have more weight

Compute a score for each candidate address

35

Converting arrays of values

into structures

As a binbloom v1 legacy,

only detects UDS-related

structures 😇

... but may do much more !

Structured data recognition

36

Demo

37

Binbloom vs. others

Firmware Binbloom Binbloom2 Rbase�nd

AE5R100V 11.33 3.019 0.916

bootloader ARM 5.48 0.183 5.40

ECU external �ash �rmware 5.78 5.69 6.17

IntegrityOS application ~ 1.453 ~

UBoot standalone application 8.228 0.723 1.462

STM32 �rmware 5.232 0.03 0.064

Teensy �rmware 5.686 0.068 0.053

Google Titan M �rmware (2018) 9.664 1.288 10.23

Flash Air �rmware 11.042 37.52 44.184

Performances (exec time in seconds)

38

Improvements

Automatic architecture detection (with cpu_rec)

Entropy thresholds may be de�ned per-

architecture

Automatic function detection per arch

Better structured data recognition algorithm

39

Try Binbloom v2 !

https://github.com/quarkslab/binbloom

40

https://github.com/quarkslab/binbloom

Conclusion

42

Conclusion

We presented a more generic base address

search algorithm

Binbloom v2 supports both 32-bit and 64-bit

archs

Still some room for improvements, so stay

tuned

43

Damien

Cauquil

Thanks ! Questions ?

 quarkslab

 dcauquil@quarkslab.com

 virtualabs

 virtualabs

44

https://twitter.com/quarkslab
mailto:dcauquil@quarkslab.com
https://twitter.com/virtualabs
https://twitch.tv/virtualabs

