
The Poor Man's Obfuscator
ELF & Mach-O Tricks to Hinder Static Analysis

Romain Thomas
July, 2022

Pass The Salt

1

Introduction

About

• Security engineer at UL - La Ciotat

• Working on banking app certifications (EMVCo, VISA, …)

• Author of LIEF: https://lief.re

• Enjoy Android, reverse engineering and, obfuscation.

The views and opinions expressed in this work are those of the author’s and do not represent the official position of UL
2

https://github.com/lief-project/LIEF
https://lief.re

The Challenges

1. Transform ELF & Mach-O binaries such as they look obfuscated

2. Transformations only based on the executable formats

3. Must impact classical tools: IDA, BinaryNinja, Ghidra, Radare2 …

4. The modified binaries must still run after the transformations

3

The Challenges

1. Transform ELF & Mach-O binaries such as they look obfuscated

2. Transformations only based on the executable formats

3. Must impact classical tools: IDA, BinaryNinja, Ghidra, Radare2 …

4. The modified binaries must still run after the transformations

3

The Challenges

1. Transform ELF & Mach-O binaries such as they look obfuscated

2. Transformations only based on the executable formats

3. Must impact classical tools: IDA, BinaryNinja, Ghidra, Radare2 …

4. The modified binaries must still run after the transformations

3

The Challenges

1. Transform ELF & Mach-O binaries such as they look obfuscated

2. Transformations only based on the executable formats

3. Must impact classical tools: IDA, BinaryNinja, Ghidra, Radare2 …

4. The modified binaries must still run after the transformations

3

Transformations Overview

• The transformations rely on LIEF (commit: f8c711d)

• The ELF and Mach-O arm64 binaries used in this presentation come from the Mbed
TLS test suite

4

Transformations Overview

5

Symbols

Symbols

6

Exports: Random Names

target = lief.parse("mbedtls_self_test.arm64.elf")

for function in target.functions:
name = "".join(random.choice(ascii_letters) for i in range(20))
target.add_exported_function(function.address, name)

7

Symbols

8

Exports: Confusing Names

target = lief.parse("mbedtls_self_test.arm64.elf")
nostrip = lief.parse("mbedtls_self_test.nostrip.arm64.elf")

symbols = [s.name for s in non_striped.symbols if s.name.startswith("mbedtls_")]

for function in target.functions:
sym = random.choice(SYMBOLS)
target.add_exported_function(function.address, sym)

9

Exports: Confusing Names

10

Symbols

11

Exports: libc symbols

target = lief.parse("mbedtls_self_test.arm64.elf")
libc = lief.parse("aarch64-linux�android/23/libc.so")

libc_symbols = {s.name for s in libc.exported_symbols}
libc_symbols -= {s.name for s in target.imported_symbols}

for function in target.functions:
sym = random.choice(libc_symbols)
libc_symbols.remove(sym)

export = target.add_exported_function(function.address, sym)

export.binding = lief.ELF.SYMBOL_BINDINGS.GNU_UNIQUE
export.visibility = lief.ELF.SYMBOL_VISIBILITY.INTERNAL

12

Exports: libc symbols

13

Exports: libc symbols

14

Symbols

15

Exports: Unaligned Functions

address = function.address
address += random.randint(16, 32)
address -= address % 4

export = target.add_exported_function(address, sym)

The idea is to create exports with
unaligned functions

16

Symbols

17

Symbols

18

Symbols

19

Sections

Sections

Parsing an ELF binary from sections is
error-prone.

20

Sections

SWAP_LIST = [
(".rela.dyn", ".data.rel.ro"),
(".got", ".data"),
(".plt", ".text"),

(".preinit_array", ".bss"),
]

for (lhs_name, rhs_name) in SWAP_LIST:
�
lhs.offset = rhs.offset
lhs.size = rhs.size
lhs.name = rhs.name
lhs.type = rhs.type
lhs.virtual_address = rhs.virtual_address
�

21

Sections

22

Sections

23

Sections

The Mach-O format and dyld enforce a
stricter layout for sections.

24

Sections

��text = target.get_section("��text")
��stubs = target.get_section("��stubs")

DELTA = 0�100

��text.size -= DELTA

��stubs.offset -= DELTA
��stubs.virtual_address -= DELTA
��stubs.size += DELTA

25

Sections

26

Sections

27

Sections

28

Specific Transformations

Mach-O: LC_FUNCTION_STARTS

The LC_FUNCTION_STARTS is a Mach-O command
that embeds a list of functions.

Similarly to unaligned exports, we can unalign
these functions

29

Mach-O: LC_FUNCTION_STARTS

functions = [addr for addr in LC_FUNCTION_STARTS.functions]

for idx, _ in enumerate(functions):
if idx % 2 � 0:

functions[idx] += 4 * 7
else:

functions[idx] -= 4 * 7

LC_FUNCTION_STARTS.functions = functions

30

Mach-O: LC_FUNCTION_STARTS

31

Mach-O: LC_FUNCTION_STARTS

32

Mach-O: LC_FUNCTION_STARTS

33

Mach-O: LC_FUNCTION_STARTS

34

Mach-O: LC_FUNCTION_STARTS

35

Mach-O: LC_FUNCTION_STARTS

36

ELF: .dynsym

Counting the number of dynamic symbols in an ELF binary is
somehow complicated …

37

ELF: .dynsym

• Easy & Dirty: .dynsym section

• Harder & Reliable: DT_GNU_HASH / DT_HASH

38

ELF: .dynsym

1 dynsym = target.get_section(".dynsym").as_frame()
2
3 sizeof = dynsym.entry_size
4 osize = dynsym.size
5 nsyms = osize / sizeof
6
7 dynsym.size = sizeof * min(3, nsyms)

39

ELF: .dynsym

40

ELF: .dynsym

41

ELF: .dynsym

42

Conclusion

Conclusion

• Executable file formats modifications (still) have an impact on all the reverse
engineering tools.

• This is a topic that is less explored than regular obfuscation.

• ⇒ less covered by recovering scripts and papers.

• Can be used in pair with classical obfuscation.

43

Conclusion

• Executable file formats modifications (still) have an impact on all the reverse
engineering tools.

• This is a topic that is less explored than regular obfuscation.
• ⇒ less covered by recovering scripts and papers.

• Can be used in pair with classical obfuscation.

43

Conclusion

• Executable file formats modifications (still) have an impact on all the reverse
engineering tools.

• This is a topic that is less explored than regular obfuscation.
• ⇒ less covered by recovering scripts and papers.

• Can be used in pair with classical obfuscation.

43

Thank you for your attention

Questions?

@rh0main

43

https://github.com/romainthomas/the-poor-mans-obfuscator

https://www.romainthomas.fr/publication

https://twitter.com/rh0main
https://github.com/romainthomas/the-poor-mans-obfuscator
https://www.romainthomas.fr/publication

Thank you for your attention

Questions?

@rh0main

43

https://github.com/romainthomas/the-poor-mans-obfuscator

https://www.romainthomas.fr/publication

https://twitter.com/rh0main
https://github.com/romainthomas/the-poor-mans-obfuscator
https://www.romainthomas.fr/publication

Thank you for your attention

Questions?

@rh0main

43

https://github.com/romainthomas/the-poor-mans-obfuscator

https://www.romainthomas.fr/publication

https://twitter.com/rh0main
https://github.com/romainthomas/the-poor-mans-obfuscator
https://www.romainthomas.fr/publication

	Introduction
	About

	Symbols
	Sections
	Specific Transformations
	Conclusion

