
1

I hack U-Boot
Pass The Salt
Théo Gordyjan

04/07/2023

2

2

Table of contents
 U-Boot specificities
 Connect to it
 Extracting firmware
 Read/Write
 Protections and bypasses
 Conclusion

3

3

U-Boot specificities
 Das U-Boot => bootloader for embedded devices
 Support a lot of functionalities

 Network support
 USB
 Loading RAM disk
 …

 Command line available (actually 2) in U-Boot but not in other
modes

4

4

Connect to it

 Accessing a U-Boot shell through UART
 Universal Asynchronous Receiver-Transmitter: serial

communication
 Configuration done with same settings:

 Baud rate
 Data bits size
 Parity bit
 Stop bits size

 But not only UART (directly on the bootscreen on the tty...)

5

5

Connect to it

 How to know ?

6

6

Connect to it

7

7

Connect to it

8

8

Connect to it

9

9

Extracting firmware

10

10

Extracting firmware

 Dumping using serial connection
 Connect to U-Boot shell using minicom, save the output to a file

(CTRL-A L)
 Initiliaze the flash memory (sf probe)
 Determine the flash size:

11

11

Extracting firmware

 Dumping using serial connection
 0x84000000 - 0x80600000 = 0x3A00000

 CTRL-A L to close the capture

12

12

Extracting firmware

 Dumping using serial connection
 Then, use xxd to convert the plaintext output to a binary file, or

uboot-mdp-dump

13

13

Extracting firmware

 Dumping using SD card
 mmc command:

 To write to the SD card, we have to specify the address on the
flash memory of where we want to start the copy (addr), the block
offset on the SD card (blk#), and the size of the block count (cnt).

14

14

Extracting firmware

 Dumping using SD card

 Use the method used before to retrieve the flash size.
 Copy the flash to the RAM and write it to the SD card. We know

that the flash size is 8388608 (0x800000) bytes and generally, a
disk has a fixed sector size, normally 512 bytes, so 8388608/512
= 16384, in hex: 0x4000.

15

15

Extracting firmware

 Dumping using SD card
 Use dd to extract the content from the SD card.

16

16

Extracting firmware

 Dumping using USB

17

17

Extracting firmware

 Dumping using USB

18

18

Extracting firmware

 Dumping using TFTP
 U-Boot stores settings inside environment variables:

 Install TFTP server on host and create a file with necessary
permissions:

 Copy data from U-Boot shell to the TFTP server:

19

19

Extracting firmware

20

20

Read/write

 bdinfo

21

21

Read/write

 Rksfc (Rockchip’s SPI Serial Flash Controller)

22

22

Read/write

 Depthcharge
 Depthcharge is a toolkit designed by NCC Group to support

security research and “jailbreaking” of embedded platforms using
the Das U-Boot bootloader.

23

23

Read/write

 depthcharge-inspect
 Script be used to collect a variety of information from the target.

24

24

Read/write

 depthcharge-print
 Retrieve all the information stored in the device configuration file

25

25

Read/write

 depthcharge-read-mem / depthcharge-write-mem
 Useful if you follow the talk but even with that, do not know how

to read/write memory,

26

26

Read/write

27

27

Read/write

 Read data from the filesystem
 Access /etc/shadow to crack hashes and have a shell on the

device:

 Read the size of the file:

28

28

Read/write

 Read data from the filesystem
 Write the content in the RAM:

 Write it on the TFTP server:

29

29

Read/write

 Write data to the file system
 Put a backdoor to bypass the login prompt with Ethernet/Wireless

connection:
 Create a file containing a reverse shell:

30

30

Read/write

 Write data to the file system
 Create the backdoored service:

31

31

Read/write

 Write data to the file system
 Add these files to the TFTP server, and save the files into the

RAM:

32

32

Read/write

 Write data to the file system
 Write the files on the file system

 Reboot, god mode on.

33

33

Protection and bypasses

Now it is show time!

34

34

Protection and bypasses

 Get a shell after U-Boot loading
 bootargs environment variable is used to pass command line

arguments to the kernel.

bootargs=console=ttyS1,115200n8 mem=39M@0x0
rmem=25M@0x2700000 init=/linuxrc rootfstype=squashfs
root=/dev/mtdblock2 rw
mtdparts=jz_sfc:512K(boot),1600k(kernel),2816k(root),1536k(user
),832k(web),896k(mtd)

35

35

Protection and bypasses

 Get a shell after U-Boot loading
 Replace init: init=/bin/sh
 Identify if Busybox is installed (using a dump for example) and

check for available binary: init=/bin/busybox sh
 Check if the bootargs argument is taken into account

bootargs=console=ttyS1,115200n8 mem=39M@0x0 rmem=25M@0x2700000
init=/linuxrc rootfstype=squashfs root=/dev/mtdblock2 rw
mtdparts=jz_sfc:512K(boot),1600k(kernel),2816k(root),1536k(user),832k(web),896k(mtd)

36

36

Protection and bypasses

 Get a shell after U-Boot loading
 Try to change the console value (ttyS0, ttyS2) or revert the order if

multiple values are defined
 Try to change stderr, stdin and stdout if there is another serial

connection:

bootargs=console=ttyS1,115200n8 mem=39M@0x0 rmem=25M@0x2700000
init=/linuxrc rootfstype=squashfs root=/dev/mtdblock2 rw
mtdparts=jz_sfc:512K(boot),1600k(kernel),2816k(root),1536k(user),832k(web),896k(mtd)

37

37

Protection and bypasses

 Get a shell after U-Boot loading
 But all this tricks did not work for a device which its configuration

was printed in previous slides.
 Digging into the filesystem from a dump made from U-Boot:

38

38

Protection and bypasses

 Get a shell after U-Boot loading
 Identity the address of the root partition and extract it
 Modify /etc/inittab: ttyS1::respawn:/sbin/getty -L ttyS1 115200

vt100 # GENERIC_SERIAL
 Rebuild the partition
 Pad with 0 to match the original size

39

39

Protection and bypasses

 Get a shell after U-Boot loading
 The partition is sent through serial communication (minicom)

using loady and loaded into RAM:

40

40

Protection and bypasses

 Get a shell after U-Boot loading
 Update the root filesystem. Pay attention, if wrong values are

specified, you can brick your device.

41

41

Protection and bypasses

 Get a shell after U-Boot loading

42

42

Protection and bypasses

 Get a shell after U-Boot loading

43

43

Protection and bypasses

 bootdelay
 The basic autoboot feature allows a system to automatically boot to the real application (such as

Linux) without a user having to enter any commands. If any key is pressed before the boot delay
time expires, U-Boot stops the autoboot process, gives a U-Boot prompt and waits forever for a
command. That's a good thing if you pressed a key because you wanted to get the prompt.

CONFIG_BOOTDELAY=0

 autoboot with no delay, but you can abort it by key input

CONFIG_BOOTDELAY=-1

 disable autoboot

CONFIG_BOOTDELAY=-2

 autoboot with no delay, with no check for abort

 So the last option should secure our device...

44

44

Protection and bypasses

 bootdelay

45

45

Protection and bypasses

 bootdelay
 However, it all depends on the implementation inside the device.

 Shell
 U-boot shell
 ?!

46

46

Protection and bypasses

 bootdelay
 Investigate the boot process:

47

47

Protection and bypasses

 bootdelay

48

48

Protection and bypasses

 bootdelay
 Using a wire connected to GND on the device, and briefly

connect it to the DO pin at the good moment.

49

49

Protection and bypasses

 bootdelaykey and bootstopkey
 These options give more control over stopping autoboot. When they

are used, a specific character or string is required to stop or delay
autoboot.

 Translation => Password is stored in plaintext.

50

50

Protection and bypasses

 bootdelaykey and bootstopkey

51

51

Protection and bypasses

 bootdelaykey and bootstopkey
 The string recognition is not very sophisticated. If a partial match is

detected, the first non-matching character is checked to see if starts a
new match. There is no check for a shorter partial match, so it's best if
the first character of a key string does not appear in the rest of the
string.

52

52

Protection and bypasses

 bootdelaykey and bootstopkey

53

53

Protection and bypasses

 bootdelaykey and bootstopkey
 nc is used to print what we enter:

54

54

Protection and bypasses

 bootdelaykey and bootstopkey

55

55

Protection and bypasses

 bootdelaykey and bootstopkey

56

56

Protection and bypasses

 bootdelaykey and bootstopkey
 Password stored in plaintext => can be found in the image.

57

57

Protection and bypasses

 bootstopkeysha256
 Hash value of the input which unlocks the device and stops autoboot.

This option allows a string to be entered into U-Boot to stop the
autoboot. The string itself is hashed and compared against the hash in
the environment variable 'bootstopkeysha256'. If it matches then boot
stops and a command-line prompt is presented.

58

58

Protection and bypasses

 bootstopkeysha256
 SHA256 probably chosen for compatibility with devices having

limited resources but not robust enough to protect weak
passwords => could be easy to compromise using modern
cracking attacks.

 Pay attention here: > echo "test" | sha256sum
f2ca1bb6c7e907d06dafe4687e579fce76b37e4e93b7605022da52
e6ccc26fd2 -
echo -n "test" | sha256sum
9f86d081884c7d659a2feaa0c55ad015a3bf4f1b2b0b822cd15d6c
15b0f00a08 -

59

59

Protection and bypasses

 bootstopkeysha256
 As for plain text storing password, not visible in environment

variables, but:

60

60

Protection and bypasses

 Online password bruteforce
 Default passwords are used on some config files on U-Boot

github. Extract them and try to use them.
 Some passwords for specific devices are leaked on the Internet.
 A bruteforce script can be used to automate this process and use

other wordlists.

61

61

Protection and bypasses

 Online password bruteforce
 Easier to use two UART devices:

 One (a FTDI FT232RL) to check the boot process and if the
script does not do anything fancy

 The second (a Hydrabus) to bruteforce the U-Boot shell,
connected on a bread board:

62

62

Conclusion

 How can we secure U-Boot
 Sign U-Boot and authenticate it by the SoC (HAB for i.MX SoC for

example).
 Establish a secured chain of trust for all the boot stages.
 Disable autoboot interrupt, or authenticate it using a unique

secured hashed password (CONFIG_BOOTDELAY=-2 /
CONFIG_AUTOBOOT_KEYED=y -
CONFIG_AUTOBOOT_ENCRYPTION=y -
CONFIG_AUTOBOOT_STOP_STR_SHA256="<sha256sum_of_yo
ur_password>).

63

63

Conclusion

 How can we secure U-Boot
 Disable the serial console (CONFIG_CMD_CMDLINE is not set).
 Entirely disable the U-Boot console

(CONFIG_DISABLE_CONSOLE=y).
 Store the U-Boot environment in nonvolatile memory

(CONFIG_ENV_IS_NOWHERE=y).
 Make sure that the bootargs environment variable cannot be

modified.
 Disable any superfluous commands that you do not need in the

U-Boot shell.
 Encrypt partitions (require a reverse engineering effort and

definitely slow down an attacker).

64

Link to the blogpost:
https://www.synacktiv.com/publications/i-hack-u-boot

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64

