Quuarkslab

Vulnerabilities in the TPM 2.0 Reference

Implementation Code
Pass The Salt 2023

Francisco Falcon / @fdfalcon

https://www.quarkslab.com/

Q Introduction

Whoami

® I'm Francisco Falcon, from Argentina.

® Reverse engineer, security researcher at Quarkslab since 2016.

® Formerly: Exploit writer at Core Security.

® Interested in the usual low-level stuff: reverse engineering, vulnerability research,

exploitation...

® @fdfalcon on

2/87

Q Introduction

Motivation

Why doing security research on TPMs?

1. Virtualized TPMs offer a little explored path for VM escape on virtualization software.

This is also true for cloud environments!

3/87

Q Introduction

Motivation

Why doing security research on TPMs?

1. Virtualized TPMs offer a little explored path for VM escape on virtualization software.
This is also true for cloud environments!

2. TPM firmware runs on a separate processor — whatever happens there, it's not observable

from the main CPU. If you get RCE on it, it may be hard to detect.

4/87

Q Introduction

Motivation

Why doing security research on TPMs?

1. Virtualized TPMs offer a little explored path for VM escape on virtualization software.
This is also true for cloud environments!

2. TPM firmware runs on a separate processor — whatever happens there, it's not observable
from the main CPU. If you get RCE on it, it may be hard to detect.

3. The underlying protocol is complex, and the code parsing it is written in C.

5/87

Introduction

4 . Widely adopted reference implementation — a vuln in the reference implementation

code ends up affecting everyone.

DISCOVERING A
VULN IN SOME
VENDOR'S CODE

DISCOVERING A
VULN IN THE
REFERENCE

IMPLEMENTATION

6/87

Q Introduction

Agenda

1. TPM basics

2. Virtual TPMs

3. TPM 2.0 protocol internals

4. Vulnerabilities: CVE-2023-1017 and CVE-2023-1018
5. Disclosure details

6. Conclusions

7/87

Part 1
TPM Basics

Q 1. TPM Basics

Trusted Platform Module (TPM)

A standard secure crypto-processor designed to perform cryptographic operations:

® Generation and storage of cryptographic keys
® Symmetric and asymmetric encryption/decryption
® Digital signatures generation/verification

® Random number generation

9/87

Q 1. TPM Basics

Trusted Platform Module (TPM)

Typical use cases:
® Attestation of the boot process integrity

See Nicolas' talk up next for details!

10/87

Q 1. TPM Basics

Trusted Platform Module (TPM)

Typical use cases:
® Attestation of the boot process integrity
See Nicolas' talk up next for details!

® Storage of disk encryption keys (e.g Bitlocker)

11/87

Q 1. TPM Basics

Trusted Platform Module (TPM)

Typical use cases:
® Attestation of the boot process integrity
See Nicolas' talk up next for details!

® Storage of disk encryption keys (e.g Bitlocker)

® Digital rights management

12/87

Q 1. TPM Basics

TPM Flavors

® Integrated TPMs

Dedicated hardware integrated into one or more semiconductor packages alongside, but logically
separate from, other components.

13/87

Q 1. TPM Basics

TPM Flavors

® Integrated TPMs

Dedicated hardware integrated into one or more semiconductor packages alongside, but logically
separate from, other components.

® Discrete TPMs

Separate component in its own semiconductor package.

14/87

Q 1. TPM Basics

TPM Flavors

® Integrated TPMs

Dedicated hardware integrated into one or more semiconductor packages alongside, but logically
separate from, other components.

® Discrete TPMs

Separate component in its own semiconductor package.
® Virtual TPMs

QEMU, VirtualBox, VMware, Hyper-V, Parallels Desktop...

15/87

Q 1. TPM Basics

TPM Flavors

® Integrated TPMs
Dedicated hardware integrated into one or more semiconductor packages alongside, but logically
separate from, other components.
® Discrete TPMs
Separate component in its own semiconductor package.
® Virtual TPMs
QEMU, VirtualBox, VMware, Hyper-V, Parallels Desktop...
® Firmware-based TPMs

Run the TPM in firmware in a Trusted Execution mode of a general purpose computation unit.

Intel Platform Trust Technology (PTT)
Based on Intel Converged Security & Management Engine (CSME), runs in the Platform Controller Hub (PCH)

AMD fTPM

16/87

Q 1. TPM Basics

TPMs on the Cloud

All the major cloud computing providers offer instances with virtual TPMs:

® Amazon AWS has NitroTPM
® Microsoft Azure provides virtual TPMs as part of Trusted Launch
® Google Cloud offers virtual TPMs as part of Shielded VMs

® Oracle Cloud Infrastructure provides virtual TPMs as part of Shielded Instances

17/87

Part 1.2

The TPM 2.0 Reference Implementation

1.2 The TPM 2.0 Reference Implementation

TPM 2.0 Reference Implementation

® The TPM standard is published and maintained by the Trusted Computing Group (TCG), a

nonprofit organization.

They publish the reference implementation code for the firmware of TPMs
Adopted by (almost?) all vendors: hardware/firmware/virtual/cloud TPMs...

® Old standard: TPM 1.2

Only allows for the use of RSA for key generation
Only allows for the use of SHA1 as hashing function
Deprecated

® Current standard: TPM 2.0

19/87

1.2 The TPM 2.0 Reference Implementation

TPM 2.0 Reference Implementation

® Latest version: Trusted Platform Module Library Specification, Family "2.0", Level 00, Revision
01.59 — November 2019

® 6 PDF documents, accounting for 2568 pages:

Part 1: Architecture (306 pages)

Part 2: Structures (177 pages)

Part 3: Commands (432 pages)

Part 3: Commands - Code (498 pages)

Part 4. Supporting Routines (146 pages)

Part 4. Supporting Routines - Code (1009 pages)

20/87

1.2 The TPM 2.0 Reference Implementation

® C code is embedded in the PDF documents

(no TCG source code repository)

Intertwined with descriptions, section names,
line numbers, tables...

Microsoft extracts the code from the PDF files
and keeps a repository on Github

IBM keeps a repository on Sourceforge

=Wl

12.5.3 Detailed Actions

#include "Tpm.h"

#include "ActivateCredential fp.h"

#if CC_ActivateCredential // Conditional expansion of this file
#include "Object spt fp.h"

Error Returns Meaning
TPM_RC_ATTRIBUTES keyHandle does not reference a decryption key
TPM_RC_ECC_POINT secret is invalid (when keyHandle is an ECC key)
TPM_RC_INSUFFICIENT secret is invalid (when keyHandle is an ECC key)
TPM_RC_INTEGRITY credentialBlob fails integrity test
TPM_RC_NO_RESULT secret is invalid (when keyHandle is an ECC key)
TPM_RC_SIZE secret size is invalid or the credentia/lBlob does not unmarshal
correctly
TPM_RC_TYPE keyHandle does not reference an asymmetric key
TPM_RC_VALUE secret is invalid (when keyHandle is an RSA key)
TEM_RC
TPM2 ActivateCredential (
ActivateCredential In *in, // IN: input parameter list
ActivateCredential Out *out // OUT: ocutput parameter list
)
{
TPM_RC result = TPM RC SUCCESS;
OBJECT *object ; // decrypt key
OBJECT *activateObject; // key associated with credential
TPM2B_DATA data; // credential data

// Input Validation

// Get decrypt key pointer
object = HandleToObject (in->keyHandle) ;

// Gat certificated cbject pointar
activateObject = HandleToObject (in->activateHandle) ;

21/87

1.2 The TPM 2.0 Reference Implementation

Is the generator for the TPM sources available?
sharadhr opened this issue on Aug 6, 2022 - 6 comments “Lvn[

bradlitterell commented on Aug 6, 2022 Contributor = =+

Sorry, at the current time, those tools are not available publicly.

@ sharadhr commented on Aug 6, 2022 « edited ~ wes As
Ne @ f‘ bradlitterell closed this as completed on Aug 6, 2022
The TPM sources used by all the samples, and especially the simulator in TPMCmd,
have these telltale lines:
La DemiMarie commented on Feb 6 Contributor = *=*
/*(Auto-generated) N¢ } ’ ?
+ Created by TpmStructures; Version 4.4 Mar 26, 2019 Are there any plans to make the tool publicly available?
* Date: Mar 6, 2020 Time: ©1:50:09PM p
*/ r
N¢
A% bradlitterell commented on Feb 7 Contributor =~ <+=-
_
Is the source for this Tpmstructures script/binary available? | presume based on this M
discussion that the generator parses the TPM 2.0 specification itself to generate code. Ne Not currently, no. Sorry.

0 DemiMarie commented on Feb 7 Contributor =~ *=*

Not currently, no. Sorry.

Understood. Can you provide the reason, or is that also confidential?

https://github.com/microsoft/ms-tpm-20-ref/issues/79 52/87

1.2 The TPM 2.0 Reference Implementation

® User space tools such as tpm2-tools abstract the underlying complexity.

23/87

1.2 The TPM 2.0 Reference Implementation

® User space tools such as tpm2-tools abstract the underlying complexity.

® Let's consider the Tpv2 startauthsession command defined in the spec.

This command is used to start an authorization session using alternative methods of establishing the
session key (sessionKey). The session key is then used to derive values used for authorization and for
encrypting parameters.

24/87

1.2 The TPM 2.0 Reference Implementation

® User space tools such as tpm2-tools abstract the underlying complexity.

® Let's consider the Tpv2 startauthsession command defined in the spec.

This command is used to start an authorization session using alternative methods of establishing the
session key (sessionKey). The session key is then used to derive values used for authorization and for
encrypting parameters.

® You can start an auth session using tpm2-tools like this:

mknod "SHOME/backpipe" p
while [1]; do tpm2 send O<"SHOME/backpipe" | nc -1U "SHOME/sock" 1>"SHOME/backpipe"; done;

tpm2 startauthsession --tcti="cmd:nc -g 0 -U SHOME/sock" <options>

25/87

® But under the surface, the TPM 2.0 protocol is quite complex...

The entity referenced with the bind parameter contributes an authorization value to the sessionKey
generation process.

If both tpmKey and bind are TPM_RH_NULL, then sessionKey is set to the Empty Buffer. If tpmKey is not
TPM_RH_NULL, then encryptedSalt is used in the computation of sessionKey. If bind is not
TPM_RH_NULL, the authValue of bind is used in the sessionKey computation.

If symmetric specifies a block cipher, then TPM_ALG_CFB is the only allowed value for the mode field in
the symmetric parameter (TPM_RC_MODE).

This command starts an authorization session and returns the session handle along with an initial
nonceTPM in the response.

If the TPM does not have a free slot for an authorization session, it shall retum
TPM_RC_SESSION_HANDLES.

If the TPM implements a “gap” scheme for assigning contextlD values, then the TPM shall return
TPM_RC_CONTEXT_GAP if creating the session would prevent recycling of old saved contexts (See
“Context Management” in TPM 2.0 Part 1).

If tomKey is not TPM_ALG_NULL then encryptedSalt shall be a TPM2B_ENCRYPTED_SECRET of the
proper type for tomKey. The TPM shall return TPM_RC_HANDLE if the sensitive portion of tomKey is not
loaded. The TPM shall return TPM_RC_VALUE if:

a) tpmKey references an RSA key and
1) the size of encryptedSalt is not the same as the size of the public modulus of tomKey,
2) encryptedSalt has a value that is greater than the public modulus of ipmKey,
3) encryptedSalt is not a properly encoded OAEP value, or

4) the decrypted salf value is larger than the size of the digest produced by the nameAlg of tomKey,
or

b} tpmKey references an ECC key and encryptedSait
1) does not contain a TPMS_ECC_POINT or

2) is not a point on the curve of tomKey,

NOTE 4 When ECC is used, the point multiply process produces a value (Z) that is used in a KDF to
produce the final secret value. The size of the secret value is an input parameter to the KDF
and the result will be set to be the size of the digest produced by the nameAlg of tpmKey.

The TPM shall return TPM_RC_KEY if fpmkey does not reference an asymmetric key. The TPM shall
return TPM_RC_VALUE if the scheme of the key is not TPM_ALG_OAEP or TPM_ALG_NULL. The TPM
shall return TPM_RC_ATTRIBUTES if tpmKey does not have the decrypt attribute SET.

NOTE While TPM_RC_VALUE is preferred, TPM_RC_SCHEME is acceptable.
If bind references a transient object, then the TPM shall return TPM_RC_HANDLE if the sensitive portion
of the object is not loaded.

For all session types, this command will cause initialization of the sessionKey and may establish binding
between the session and an object (the bind object). If sessionType is TPM_SE_POLICY or
TPM_SE_TRIAL, the additional session initialization is:

« set policySession—policyDigest to a Zero Digest (the digest size for policySession—policyDigest is
the size of the digest produced by authHash);

« authorization may be given at any locality;

« authorization may apply to any command code;

« authorization may apply to any command parameters or handles;
» the authorization has no time limit;

s an authValue is not needed when the authorization is used:;

s the session is not bound;

« the session is not an audit session; and

« the time at which the policy session was created is recorded.

Additionally, if sessionType is TPM_SE_TRIAL, the session will not be usable for authorization but can be
used to compute the authPolicy for an object.

NOTE 5 Although this command changes the session allocation information in the TPM, it does not invalidate
a saved context. That is, TPM2_Shutdown() is not required after this command in order to re-
establish the orderly state of the TPM. This is because the created context will occupy an available
slot in the TPM and sessions in the TPM do not survive any TPM2_Startup(). However, if a created
session is context saved, the orderly state does change.

The TPM shall return TPM_RC_SIZE if nonceCaller is less than 16 octets or is greater than the size of
the digest produced by authHash.

1.2 The TPM 2.0 Reference Implementation

26/87

Part 2
Virtual TPMs

Q 2. Virtual TPMs

Virtual TPMs

® Nowadays, most virtualization solutions provide a virtual TPM.

AFAIK, Xen is the only one to provide pass-through access to the TPM, instead of using a virtual one.

® Implemented as an additional process running in the host system.
Both QEMU and VirtualBox use 1ibtpms, @an open source library based on the reference

implementation.

® The way of sending TPM commands from the guest system to the TPM process on the host

(and the other way around) is up to each implementation
SWTPM (embeds 1ibtpms, used by QEMU) uses a TCP socket.

28/87

Q 2. Virtual TPMs

Virtual TPMs

® Virtual TPMs allow us to easily debug TPM firmware.

Great for doing research!

® On the other hand, they expose additional attack surface, that in a worst case scenario could

allow to escape from the VM to the host side.

29/87

Part 3
TPM 2.0 protocol internals

Part 3.1

Commands and Responses

3.1 - Commands and Responses

Architecture
tpm2-tools o
- Application
TSS Library
A
/dev/tpmrm0 I /dev/tpm0 User space
Kernel space

TPM Driver 1

\ 4

A

A 4 Secure environment

TPM

32/87

3.1 - Commands and Responses

0 1 2 3 TPM Base Command Header

tag

size

typedef UINT32 TPM CC;
commandCode [...]

33/87

3.1 - Commands and Responses

0 1 2 3 .
TPM Command with Handles
tag
® Command-dependent
size ® O to 3 handles
commandCode typedef TPM_HANDLE TPM_RH;

handle1

handle2 : :

handle3

34/87

tag

size

commandCode

handle3

authorizationSize

authorizationArea

3.1 - Commands and Responses

TPM Command with Authorization
Area

® Authorization area contains 1to 3 session
structures.

Also called Session Area in the reference
implementation code.

@® Authorization area is only present if the tag of

the command is TpM ST SESSTONS

35/87

3.1 - Commands and Responses

0 1 2 3
. TPM Command with Parameters
size
® Parameter contents are command-dependent.
commandCode
S— : ® Parameters are only present if the tag of the
E handle1 ;
S command is TPM ST SESSTIONS
: handle2 !
handle3
authorizationSize
authorizationArea
paramSize
parameters

36/87

3.1 - Commands and Responses

0 1 2 3 TPM Basic Response
tag ® csponseCode == 0 — indicates success
® csponseCode = 0 — indicates error
responseSize .
condition

responseCode

37/87

Q 3.1 - Commands and Responses

0 1 2 3
. TPM Response with Fields
responseSize
® Response may contain handles
responseCode
S —— 1 ® Response may contain parameters
: handle1 ;
S ® Response may contain authorization area
E handle2 ;
L It's all command-dependent
’ handle3 ’
el ® Notice the inverted order between
parameters authorization and parameters areas
authorizationSize
authorizationArea

38/87

Part 3.2

Authorization Area

3.2 - Authorization Area

Authorization Area

0 1 2 3 ® Session attributes:
sessionHandle 4 bytes
nonceSize 2 bytes typedef struct TPMA SESSION {
I A UINT8 continueSession : 1;
: nonce i <nonceSize> bytes UINT8 auditExclusive : 1,'
S ' UINT8 auditReset : 1;
; UINT8 reserved3 4 : 2;
session o e — ’
UINT8 encrypt : 1;
authSize 2 bytes UINT8 audit : 1;
STt N } TPMA_SESSION;
: authorization 5 <authSize> bytes

® Authorization: either HMAC or password

40/87

Part 4
Vulnerabilities: CVE-2023-1017 and CVE-2023-1018

Part 4.1
Bug #1- OOB read in CryptParameterDecryption function (CVE-2023-1018)

4. CVE-2023-1017 and CVE-2023-1018

ExecCommand.c

LIB EXPORT void

ExecuteCommand (

unsigned int requestSize,

unsigned char *request,

unsigned int *responseSize,

unsigned char **response

)
[...]
result = UINT32 Unmarshal (&authorizationSize, &buffer, &size);
if (result != TPM RC SUCCESS)

goto Cleanup;

NOTE :

[1] if (authorizationSize < 9
| | authorizationSize > (UINT32) size)

{
result = TPM RC_ SIZE;

goto Cleanup;

43/87

4. CVE-2023-1017 and CVE-2023-1018

sessionBufferStart = buffer;

[2] parmBufferStart = sessionBufferStart + authorizationSize;
[3] parmBufferSize = size - authorizationSize;
[4] result = ParseSessionBuffer (commandCode,

handleNum,

handles,

sessionBufferStart,

authorizationSize,
[5] parmBufferStart,
[0] parmBufferSize) ;

44/87

4. CVE-2023-1017 and CVE-2023-1018

SessionProcess.c

TPM RC
ParseSessionBuffer (
TPM CC commandCode,
UINT32 handleNum,
TPM HANDLE handles|[],
BYTE *sessionBufferStart,
UINT32 sessionBufferSize,
BYTE *parmBufferStart,
UINT32 parmBufferSize
)
{
[...]
[1] if (s decryptSessionIndex != UNDEFINED INDEX) {
[...]
size = DecryptSize (commandCode) ;
[2] result = CryptParameterDecryption (
s _sessionHandles[s decryptSessionIndex],
&s nonceCaller[s decryptSessionIndex].b,
[3] parmBufferSize, (UINT16)size,
&extraKey,
[4] parmBufferStart) ;

45/87

4. CVE-2023-1017 and CVE-2023-1018

CryptUtil.c

TPM RC
CryptParameterDecryption (
TPM HANDLE handle,
TPM2B *nonceCaller,
UINT32 bufferSize,
UINT16 leadingSizeInByte,
TPM2B AUTH *extraKey,
BYTE *pbuffer
)
{
[...]
[1] cipherSize = (UINT32)BYTE ARRAY TO UINT16 (buffer);
[2] buffer = gbuffer([2];
[...]
swap.h

46/87

4. CVE-2023-1017 and CVE-2023-1018

Bug #1- OOB read in CryptParameterDecryption function (CVE-2023-1018)

® CryptParameterDecryption function in cryptutil.c usesthe BYTE ARRAY TO UINT16 Macro to
read a 16-bit field (ciphersize) from the buffer pointed by parmBufferstart without checking if

there's any parameter data past the session area.

47/87

4. CVE-2023-1017 and CVE-2023-1018

Bug #1- OOB read in CryptParameterDecryption function (CVE-2023-1018)

® CryptParameterDecryption function in cryptutil.c usesthe BYTE ARRAY TO UINT16 Macro to
read a 16-bit field (ciphersize) from the buffer pointed by parmBufferstart without checking if
there's any parameter data past the session area.

® If a malformed command doesn't contain a parameterarea past the sessionarea, it will trigger

an out-of-bounds memory read, making the TPM access memory past the end of the

command.

48/87

4. CVE-2023-1017 and CVE-2023-1018

Bug #1- OOB read in CryptParameterDecryption function (CVE-2023-1018)

® CryptParameterDecryption function in cryptutil.c usesthe BYTE ARRAY TO UINT16 Macro to
read a 16-bit field (ciphersize) from the buffer pointed by parmBufferstart without checking if
there's any parameter data past the session area.

® If a malformed command doesn't contain a parameterarea past the sessionarea, it will trigger
an out-of-bounds memory read, making the TPM access memory past the end of the

command.
® The utnTi6 Unmarshal function should have been used instead, which performs proper size

checks before reading from a given buffer.

49/87

4. CVE-2023-1017 and CVE-2023-1018

tag
size

commandCode

handle3

authorizationSize

authorizationArea

arameters Missing, but assumed
L 3 to be present

50/87

4. CVE-2023-1017 and CVE-2023-1018

Bug #1- OOB read in CryptParameterDecryption function (CVE-2023-1018)

TPM RC uintl6é_t Unmarshal (uintl6é_t* target, BYTE** buffer, INT32* size) {
uintlé_t value net = 0;
if (!size || *size < sizeof (uintl6_t)) {
return TPM RC INSUFFICIENT;
}
memcpy (&value net, *buffer, sizeof (uintlé_t));
switch (sizeof (uintlé_t)) {
case 2:
*target = bel6toh(value net);
break;
case 4:
*target = be32toh(value net);
break;
case 8:
*target = be64toh(value net);
break;
default:
*target = value net;

}

*pbuffer += sizeof (uintlé_t);
*size -= sizeof (uintlé_t);
return TPM RC SUCCESS;

51/87

4. CVE-2023-1017 and CVE-2023-1018

Step 1) - Start Auth Session

% | Application = TPM

.tag = TPM_ST_NO_SESSIONS

D
.command =

A 4

52/87

Step 2) - Auth Response

|

4. CVE-2023-1017 and CVE-2023-1018

Application

.tag = TPM_ST_NO_SESSIONS

D)
.command =

.tag = TPM_ST_NO_SESSIONS

.responseCode = TPM_RC_SUCCESS

2) .sessionHandle = 0x2000000

(0)

A 4

A

r"
L J

TPM

53/87

. CVE-2023-1017 and CVE-2023-1018

Step 3) - Create Primary with no Parameter Area

rA
L

TPM

K"' Application

.tag = TPM_ST_NO_SESSIONS
.command =

A\ 4

.tag = TPM_ST_NO_SESSIONS
.responseCode = TPM_RC_SUCCESS (0)

2) .sessionHandle = 0x2000000
|

A

.tag = TPM_ST_SESSIONS

.command =

.authCommand.sessionHandle = 0x2000000
.authCommand.nonceSize = 0x0000
.authCommand.sessionAttrs.decrypt = 1

3)
.authCommand.authsize = 0x0000

N
»

54/87

Part 4.2

Bug #2 - OOB write in CryptParameterDecryption function (CVE-2023-
1017)

4. CVE-2023-1017 and CVE-2023-1018

CryptUtil.c

TPM RC
CryptParameterDecryption (

TPM HANDLE handle,

TPM2B *nonceCaller,

UINT32 bufferSize,

UINT16 leadingSizeInByte,

TPM2B AUTH *extraKey,

BYTE *pbuffer

)
{

[...]

[1] cipherSize = (UINT32)BYTE ARRAY TO UINT16 (buffer);
[2] buffer = &buffer[2];

[...]

(continues next slide)

56/87

4. CVE-2023-1017 and CVE-2023-1018

(continued)

[...]
[3] if (cipherSize > bufferSize)
return TPM RC SIZE;

MemoryCopy2B (&key.b, &session->sessionKey.b, sizeof (key.t.buffer));
MemoryConcat2B (&key.b, &extraKey->b, sizeof (key.t.buffer));
if (session->symmetric.algorithm == TPM ALG XOR)

[4] CryptXORObfuscation (session->authHashAlg, &key.b, nonceCaller,
& (session->nonceTPM.b), cipherSize, buffer);
else

[5] ParmDecryptSym (session->symmetric.algorithm, session->authHashAlg,
session->symmetric.keyBits.sym,
&key.b, nonceCaller, &session->nonceTPM.b,
cipherSize, buffer);
return TPM RC SUCCESS;

57/87

4. CVE-2023-1017 and CVE-2023-1018

Bug #2 - OOB write in CryptParameterDecryption function (CVE-2023-
1017)

® If a proper parameterarea is provided (avoiding bug #1), the first two bytes of it are interpreted
as the size of the data to be decrypted (ciphersize), and the buffer pointer is advanced by 2.

® There's an attempt of a sanity check: if ciphersize value is greater than the actual size of
parameterArea, then it bails out.

® But there's a problem here: after reading the ciphersize 16-bit field and advancing the buffer
pointer by 2, the function forgets to subtract 2 from buffersize, to account for the 2 bytes that

were already processed.

58/87

4. CVE-2023-1017 and CVE-2023-1018

Bug #2 - OOB write in CryptParameterDecryption function (CVE-2023-
1017)

@ It's possible to pass the sanity check with a ciphersize value that is larger by 2 than the actual

size of the remaining data.

® As a consequence, when either cryptxorRObfuscation () OF ParmbecryptSym () are called to

decrypt the data in the parameterarea following the ciphersize field, the TPM ends up writing

2 bytes past the end of the buffer, resulting in an out-of-bounds write.

59/87

4. CVE-2023-1017 and CVE-2023-1018

State before parsing Parameter Area
Buffer

l 2 bytes
&
\
D\

cipherSize =58 AAAAAAAAAAAAAAA

BBBBBBEBBBBBBBBBBBBBBBB

ccccccccccececececceccecceccecccec
/

BufferSize (length of remaining data) = 60

60/87

4. CVE-2023-1017 and CVE-2023-1018

Expected state after parsing cipherSize
Buffer

2 bytes l
&
(A
D\

cipherSize =58 AAAAAAAAAAAAAAA

BBBBBBEBBBBBBBBBBBBBBBB

ccccccccccececececceccecceccecccec
/

BufferSize (length of remaining data) = 58

61/87

4. CVE-2023-1017 and CVE-2023-1018

Actual state after parsing cipherSize
Buffer

2 bytes l
&
(A

cipherSize =58 AAAAAAAAAAAAAAA

\

BBBBBBEBBBBBBBBBBBBBBBB

GEEEECCCCEECEEtEGEEER
~ /

N2 |

BufferSize (length of remaining data) = 60

62/87

4. CVE-2023-1017 and CVE-2023-1018

This state becomes valid!
Buffer

2 bytes l
N
(] -

\
cipherSize =60 AAAAAAAAAAAAAAA

BBBBBBBBBBBBBBBBBBBBBB - 98 bytes

cccccccccccecececcecececceccecece
~ |

QN7 j

BufferSize (length of remaining data) = 60

63/87

4. CVE-2023-1017 and CVE-2023-1018

Step 1) - Start Auth Session

% | Application = TPM

.tag = TPM_ST_NO_SESSIONS

D
.command =

A 4

64/87

Step 2) - Auth Response

|

4. CVE-2023-1017 and CVE-2023-1018

Application

.tag = TPM_ST_NO_SESSIONS

D)
.command =

.tag = TPM_ST_NO_SESSIONS

.responseCode = TPM_RC_SUCCESS

2) .sessionHandle = 0x2000001

(0)

A 4

A

r"
L J

TPM

65/87

4. CVE-2023-1017 and CVE-2023-1018

Step 3) - Create Primary with crafted paramSize

|

r"

L J
TTTT

Application TPM

D .tag = TPM_ST_NO_SESSIONS

.command =
.tag = TPM_ST_NO_SESSTIONS
2 .responseCode = TPM_RC_SUCCESS (0)
.sessionHandle = 0x2000001
< |
.tag = TPM_ST_SESSIONS
.command =
.authCommand.sessionHandle = 0x2000001
.authCommand.nonceSize = 0x0000
3 .authCommand.sessionAttrs.decrypt = 1

.authCommand.authSize = 0x0000
.paramSize = MAX_CMD_SIZE -

sizeof(base + auth) + 2
.paramArea = '\x41' * (MAX_CMD_SIZE -
sizeof(base + auth))

N
>

66/87

Part 4.3

Impact of the vulnerabilities

4. CVE-2023-1017 and CVE-2023-1018

1 - Impact of the OOB read

® Function cryptrParameterbecryption in Cryptutil.c can read 2 bytes past the end of the
received TPM command. If an affected TPM doesn't zero out the command buffer between
received commands, it can result in the affected function reading whatever 16-bit value was

already there from a previous command.

68/87

4. CVE-2023-1017 and CVE-2023-1018

1 - Impact of the OOB read

® Function cryptrParameterbecryption in Cryptutil.c can read 2 bytes past the end of the
received TPM command. If an affected TPM doesn't zero out the command buffer between
received commands, it can result in the affected function reading whatever 16-bit value was

already there from a previous command.
This is dependant on each implementation.

69/87

4. CVE-2023-1017 and CVE-2023-1018

2 - Impact of the OOB write

® Functions CrythORObfuscation/ParmDecryptSym iN CryptUtil.c (called from
CryptParameterDecryption) can write 2 bytes past the end of the command buffer, resulting in

memory corruption.

70/87

4. CVE-2023-1017 and CVE-2023-1018

2 - Impact of the OOB write

® Functions CrythORObfuscation/ParmDecryptSym iN CryptUtil.c (called from
CryptParameterDecryption) can write 2 bytes past the end of the command buffer, resulting in
memory corruption.

® The chances of having something useful to overwrite adjacent to the command buffer depend

on how each implementation allocates the buffer that receives TPM commands.

71/87

4. CVE-2023-1017 and CVE-2023-1018

2 - Impact of the OOB write

® Functions CrythORObfuscation/ParmDecryptSym iN CryptUtil.c (called from
CryptParameterDecryption) can write 2 bytes past the end of the command buffer, resulting in
memory corruption.

® The chances of having something useful to overwrite adjacent to the command buffer depend

on how each implementation allocates the buffer that receives TPM commands.
SWTPM (QEMU) uses ma11oc () to allocate a command buffer of size 0x1008 (8 bytes for a send
command prefix that can be used to modify the locality, plus Ox1000 bytes for the maximum TPM

command size).

72/87

4. CVE-2023-1017 and CVE-2023-1018

2 - Impact of the OOB write

® Worst case scenario; OOB write — code execution on the TPM

VM escape in the case of a virtual TPM

73/87

4. CVE-2023-1017 and CVE-2023-1018

2 - Impact of the OOB write

® Worst case scenario; OOB write — code execution on the TPM

VM escape in the case of a virtual TPM

® Corrupting TPM memory containing sensitive data such as a key

74/87

4. CVE-2023-1017 and CVE-2023-1018

2 - Impact of the OOB write

® Worst case scenario; OOB write — code execution on the TPM

VM escape in the case of a virtual TPM

® Corrupting TPM memory containing sensitive data such as a key

® A DoS can cause enough trouble:

Failure for full disk encryption solutions relying on the TPM
Failure to perform boot attestation

75/87

Part b

Disclosure Details

Q 5. Disclosure Details

Disclosure Details

® Industry-wide disclosure process, with many parties involved.

Ivdn Arce handled it from Quarkslab's side.
Coordinated via US CERT/CC.

® CERT/CC granted access to the vulnerability report to 1600 vendors.

Reason: several PC OEM and hardware vendors expressed interest in reaching out to other vendors
up and down their supply chain.

® Google pushed the fix to a Chromium OS public repository before embargo ended.
® Huawei's OpenEuler Linux distribution made the vulnerability report available on its public

issue tracker.

77/87

Q 5. Disclosure Details

Disclosure Details

® Some hardware vendors reported that their products were not affected.

Hard to verify due to the lack of debugging/monitoring capabilities.
If they identified and fixed the bugs beforehand, they never reported them to TCG.

® Vulnerable status remains unknown for several hardware vendors (see
https.//kb.cert.org/vuls/id/782720)

Broadcom Unknown
Huawei Unknown
Qualcomm Unknown

78/87

https://kb.cert.org/vuls/id/782720

Part 6

Conclusions

Q 6. Conclusions

Conclusions (1)

® Every TPM (either software or hardware implementations) whose firmware is based on the
reference code published by the Trusted Computing Group is expected to be affected by

these two vulnerabilities.

This includes the two main open source implementations available: Microsoft's and IBM's.

80/87

Q 6. Conclusions

Conclusions (1)

® Every TPM (either software or hardware implementations) whose firmware is based on the
reference code published by the Trusted Computing Group is expected to be affected by

these two vulnerabilities.

This includes the two main open source implementations available: Microsoft's and IBM's.

® Although all affected TPMs share the exact same vulnerable function, the likeliness of
successful exploitation depends on how the command buffer is implemented, and that part is

left to each implementation.

Everyone seems to do it in a different way.

81/87

Q 6. Conclusions

Conclusions (2)

® We were able to verify that these vulnerabilities were present in the software TPMs included in

major desktop virtualization solutions, both free and non-free.
SWTPM (based on 1ibtpms, used by QEMU) case looked dangerous (I haven't checked VirtualBox).

82/87

Q 6. Conclusions

Conclusions (2)

® We were able to verify that these vulnerabilities were present in the software TPMs included in

major desktop virtualization solutions, both free and non-free.
SWTPM (based on 1ibtpms, used by QEMU) case looked dangerous (I haven't checked VirtualBox).

® Virtual TPMs available in the biggest cloud computing providers were also likely affected.

Google Cloud uses the IBM version of the reference implementation, which was affected.
Microsoft Azure is based on Microsoft's Hyper-V, which was affected.

83/87

Q 6. Conclusions

Conclusions (3)

® We confirmed the OOB write in a Dell machine with a Nuvoton hardware TPM.
Dell Latitude E5570 with Nuvoton NPCT65Xx, firmware version 1.3.0.1
After triggering the bug, the chip would stop responding to further commands, and required a hard
reboot of the computer to be operational again.

84/87

Q 6. Conclusions

Conclusions (3)

® We confirmed the OOB write in a Dell machine with a Nuvoton hardware TPM.

Dell Latitude E5570 with Nuvoton NPCT65Xx, firmware version 1.3.0.1
After triggering the bug, the chip would stop responding to further commands, and required a hard
reboot of the computer to be operational again.

® We expected most TPM hardware vendors to be affected too.

The lack of debugging capabilities in the TPM environment makes it harder to confirm the presence of
vulnerabilities.

85/87

Q 6. Conclusions

Conclusions (4)

® Reference implementations deserve special attention, security-wise.

Vulnerabilities in reference implementation code spread across diverse codebases, and may end up
biting everyone.

86/87

%uarkslab

Questions?

https://www.quarkslab.com/

