
Vulnerabilities in the TPM 2.0 Reference

Implementation Code
Pass The Salt 2023

Francisco Falcón / @fdfalcon

https://www.quarkslab.com/

Whoami

● I'm Francisco Falcón, from Argentina.

● Reverse engineer, security researcher at Quarkslab since 2016.

● Formerly: Exploit writer at Core Security.

● Interested in the usual low-level stuff: reverse engineering, vulnerability research,

exploitation...

● @fdfalcon on

Introduction

2/87

Motivation

Why doing security research on TPMs?

1. Virtualized TPMs offer a little explored path for VM escape on virtualization software.

1. This is also true for cloud environments!

Introduction

3/87

Motivation

Why doing security research on TPMs?

1. Virtualized TPMs offer a little explored path for VM escape on virtualization software.

1. This is also true for cloud environments!

2. TPM firmware runs on a separate processor ⟶ whatever happens there, it's not observable

from the main CPU. If you get RCE on it, it may be hard to detect.

Introduction

4/87

Motivation

Why doing security research on TPMs?

1. Virtualized TPMs offer a little explored path for VM escape on virtualization software.

1. This is also true for cloud environments!

2. TPM firmware runs on a separate processor ⟶ whatever happens there, it's not observable

from the main CPU. If you get RCE on it, it may be hard to detect.

3. The underlying protocol is complex, and the code parsing it is written in C.

Introduction

5/87

4 . Widely adopted reference implementation ⟶ a vuln in the reference implementation

code ends up affecting everyone.

Introduction

6/87

Agenda

1. TPM basics

2.Virtual TPMs

3. TPM 2.0 protocol internals

4. Vulnerabilities: CVE-2023-1017 and CVE-2023-1018

5.Disclosure details

6.Conclusions

Introduction

7/87

Part 1

TPM Basics

Introduction

Trusted Platform Module (TPM)

A standard secure crypto-processor designed to perform cryptographic operations:

● Generation and storage of cryptographic keys

● Symmetric and asymmetric encryption/decryption

● Digital signatures generation/verification

● Random number generation

1. TPM Basics

9/87

Trusted Platform Module (TPM)

Typical use cases:

● Attestation of the boot process integrity

See Nicolas' talk up next for details!

1. TPM Basics

10/87

Trusted Platform Module (TPM)

Typical use cases:

● Attestation of the boot process integrity

See Nicolas' talk up next for details!

● Storage of disk encryption keys (e.g Bitlocker)

1. TPM Basics

11/87

Trusted Platform Module (TPM)

Typical use cases:

● Attestation of the boot process integrity

See Nicolas' talk up next for details!

● Storage of disk encryption keys (e.g Bitlocker)

● Digital rights management

1. TPM Basics

12/87

TPM Flavors

● Integrated TPMs

● Dedicated hardware integrated into one or more semiconductor packages alongside, but logically

separate from, other components.

1. TPM Basics

13/87

TPM Flavors

● Integrated TPMs

● Dedicated hardware integrated into one or more semiconductor packages alongside, but logically

separate from, other components.

● Discrete TPMs

● Separate component in its own semiconductor package.

1. TPM Basics

14/87

TPM Flavors

● Integrated TPMs

● Dedicated hardware integrated into one or more semiconductor packages alongside, but logically

separate from, other components.

● Discrete TPMs

● Separate component in its own semiconductor package.

● Virtual TPMs

● QEMU, VirtualBox, VMware, Hyper-V, Parallels Desktop...

1. TPM Basics

15/87

TPM Flavors

● Integrated TPMs

● Dedicated hardware integrated into one or more semiconductor packages alongside, but logically

separate from, other components.

● Discrete TPMs

● Separate component in its own semiconductor package.

● Virtual TPMs

● QEMU, VirtualBox, VMware, Hyper-V, Parallels Desktop...

● Firmware-based TPMs

● Run the TPM in firmware in a Trusted Execution mode of a general purpose computation unit.

● Intel Platform Trust Technology (PTT)

● Based on Intel Converged Security & Management Engine (CSME), runs in the Platform Controller Hub (PCH)

● AMD fTPM

1. TPM Basics

16/87

TPMs on the Cloud

All the major cloud computing providers offer instances with virtual TPMs:

● Amazon AWS has NitroTPM

● Microsoft Azure provides virtual TPMs as part of Trusted Launch

● Google Cloud offers virtual TPMs as part of Shielded VMs

● Oracle Cloud Infrastructure provides virtual TPMs as part of Shielded Instances

1. TPM Basics

17/87

Part 1.2

The TPM 2.0 Reference Implementation

1. TPM Basics

TPM 2.0 Reference Implementation

● The TPM standard is published and maintained by the Trusted Computing Group (TCG), a

nonprofit organization.

● They publish the reference implementation code for the firmware of TPMs

● Adopted by (almost?) all vendors: hardware/firmware/virtual/cloud TPMs...

● Old standard: TPM 1.2

● Only allows for the use of RSA for key generation

● Only allows for the use of SHA1 as hashing function

● Deprecated

● Current standard: TPM 2.0

1.2 The TPM 2.0 Reference Implementation

19/87

TPM 2.0 Reference Implementation

● Latest version: Trusted Platform Module Library Specification, Family "2.0", Level 00, Revision

01.59 – November 2019

● 6 PDF documents, accounting for 2568 pages:

● Part 1: Architecture (306 pages)

● Part 2: Structures (177 pages)

● Part 3: Commands (432 pages)

● Part 3: Commands - Code (498 pages)

● Part 4: Supporting Routines (146 pages)

● Part 4: Supporting Routines - Code (1009 pages)

1.2 The TPM 2.0 Reference Implementation

20/87

● C code is embedded in the PDF documents

(no TCG source code repository)

● Intertwined with descriptions, section names,

line numbers, tables...

● Microsoft extracts the code from the PDF files

and keeps a repository on Github

● IBM keeps a repository on Sourceforge

1.2 The TPM 2.0 Reference Implementation

21/87

1.2 The TPM 2.0 Reference Implementation

https://github.com/microsoft/ms-tpm-20-ref/issues/79 22/87

● User space tools such as tpm2-tools abstract the underlying complexity.

1.2 The TPM 2.0 Reference Implementation

23/87

● User space tools such as tpm2-tools abstract the underlying complexity.

● Let's consider the TPM2_StartAuthSession command defined in the spec.

● This command is used to start an authorization session using alternative methods of establishing the

session key (sessionKey). The session key is then used to derive values used for authorization and for

encrypting parameters.

1.2 The TPM 2.0 Reference Implementation

24/87

● User space tools such as tpm2-tools abstract the underlying complexity.

● Let's consider the TPM2_StartAuthSession command defined in the spec.

● This command is used to start an authorization session using alternative methods of establishing the

session key (sessionKey). The session key is then used to derive values used for authorization and for

encrypting parameters.

● You can start an auth session using tpm2-tools like this:

mknod "$HOME/backpipe" p
while [1]; do tpm2_send 0<"$HOME/backpipe" | nc -lU "$HOME/sock" 1>"$HOME/backpipe"; done;

tpm2_startauthsession --tcti="cmd:nc -q 0 -U $HOME/sock" <options>

1.2 The TPM 2.0 Reference Implementation

25/87

● But under the surface, the TPM 2.0 protocol is quite complex...

1.2 The TPM 2.0 Reference Implementation

26/87

Part 2

Virtual TPMs

1.2 The TPM 2.0 Reference Implementation

Virtual TPMs

● Nowadays, most virtualization solutions provide a virtual TPM.

● AFAIK, Xen is the only one to provide pass-through access to the TPM, instead of using a virtual one.

● Implemented as an additional process running in the host system.

● Both QEMU and VirtualBox use libtpms, an open source library based on the reference

implementation.

● The way of sending TPM commands from the guest system to the TPM process on the host

(and the other way around) is up to each implementation

● SWTPM (embeds libtpms, used by QEMU) uses a TCP socket.

2. Virtual TPMs

28/87

Virtual TPMs

● Virtual TPMs allow us to easily debug TPM firmware.

● Great for doing research!

● On the other hand, they expose additional attack surface, that in a worst case scenario could

allow to escape from the VM to the host side.

2. Virtual TPMs

29/87

Part 3

TPM 2.0 protocol internals

2. Virtual TPMs

Part 3.1

Commands and Responses

2. Virtual TPMs

Architecture

3.1 - Commands and Responses

32/87

TPM Base Command Header

/* Tpm2 command tags. */
#define TPM_ST_NO_SESSIONS 0x8001
#define TPM_ST_SESSIONS 0x8002

typedef UINT32 TPM_CC;
[...]
#define TPM_CC_PolicySecret (TPM_CC)(0x00000151)
#define TPM_CC_Rewrap (TPM_CC)(0x00000152)
#define TPM_CC_Create (TPM_CC)(0x00000153)
#define TPM_CC_ECDH_ZGen (TPM_CC)(0x00000154)
#define TPM_CC_HMAC (TPM_CC)(0x00000155)
#define TPM_CC_Import (TPM_CC)(0x00000156)
#define TPM_CC_Load (TPM_CC)(0x00000157)
#define TPM_CC_Quote (TPM_CC)(0x00000158)
#define TPM_CC_RSA_Decrypt (TPM_CC)(0x00000159)
[...]

3.1 - Commands and Responses

33/87

TPM Command with Handles

● Command-dependent

● 0 to 3 handles

typedef TPM_HANDLE TPM_RH;
#define TPM_RH_FIRST 0x40000000
#define TPM_RH_SRK 0x40000000
#define TPM_RH_OWNER 0x40000001
#define TPM_RH_REVOKE 0x40000002
#define TPM_RH_TRANSPORT 0x40000003
#define TPM_RH_OPERATOR 0x40000004
#define TPM_RH_ADMIN 0x40000005
[...]

3.1 - Commands and Responses

34/87

TPM Command with Authorization

Area

● Authorization area contains 1 to 3 session

structures.

● Also called Session Area in the reference

implementation code.

● Authorization area is only present if the tag of

the command is TPM_ST_SESSIONS

3.1 - Commands and Responses

35/87

TPM Command with Parameters

● Parameter contents are command-dependent.

● Parameters are only present if the tag of the

command is TPM_ST_SESSIONS

3.1 - Commands and Responses

36/87

TPM Basic Response

● responseCode == 0 ⟶ indicates success

● responseCode != 0 ⟶ indicates error

condition

3.1 - Commands and Responses

37/87

TPM Response with Fields

● Response may contain handles

● Response may contain parameters

● Response may contain authorization area

● It's all command-dependent

● Notice the inverted order between

authorization and parameters areas

3.1 - Commands and Responses

38/87

Part 3.2

Authorization Area

3.1 - Commands and Responses

● Session attributes:

typedef struct _TPMA_SESSION {
 UINT8 continueSession : 1;
 UINT8 auditExclusive : 1;
 UINT8 auditReset : 1;
 UINT8 reserved3_4 : 2;
 UINT8 decrypt : 1;
 UINT8 encrypt : 1;
 UINT8 audit : 1;
} TPMA_SESSION;

● Authorization: either HMAC or password

Authorization Area

3.2 - Authorization Area

40/87

Part 4

Vulnerabilities: CVE-2023-1017 and CVE-2023-1018

3.2 - Authorization Area

Part 4.1

Bug #1 - OOB read in CryptParameterDecryption function (CVE-2023-1018)

3.2 - Authorization Area

ExecCommand.c
LIB_EXPORT void
ExecuteCommand(
 unsigned int requestSize, // IN: command buffer size
 unsigned char *request, // IN: command buffer
 unsigned int *responseSize, // OUT: response buffer size
 unsigned char **response // OUT: response buffer
)
 [...]
 // Find out session buffer size.
 result = UINT32_Unmarshal(&authorizationSize, &buffer, &size);
 if(result != TPM_RC_SUCCESS)
 goto Cleanup;
 // Perform sanity check on the unmarshaled value. If it is smaller than
 // the smallest possible session or larger than the remaining size of
 // the command, then it is an error. NOTE: This check could pass but the
 // session size could still be wrong. That will be determined after the
 // sessions are unmarshaled.
[1] if(authorizationSize < 9
 || authorizationSize > (UINT32) size)
 {
 result = TPM_RC_SIZE;
 goto Cleanup;
 }
[...]

4. CVE-2023-1017 and CVE-2023-1018

43/87

[...]
 // The sessions, if any, follows authorizationSize.
 sessionBufferStart = buffer;
 // The parameters follow the session area.
[2] parmBufferStart = sessionBufferStart + authorizationSize;
 // Any data left over after removing the authorization sessions is
 // parameter data. If the command does not have parameters, then an
 // error will be returned if the remaining size is not zero. This is
 // checked later.
[3] parmBufferSize = size - authorizationSize;
 // The actions of ParseSessionBuffer() are described in the introduction.
[4] result = ParseSessionBuffer(commandCode,
 handleNum,
 handles,
 sessionBufferStart,
 authorizationSize,
[5] parmBufferStart,
[6] parmBufferSize);
 [...]

4. CVE-2023-1017 and CVE-2023-1018

44/87

SessionProcess.c
TPM_RC
ParseSessionBuffer(
 TPM_CC commandCode, // IN: Command code
 UINT32 handleNum, // IN: number of element in handle array
 TPM_HANDLE handles[], // IN: array of handle
 BYTE *sessionBufferStart, // IN: start of session buffer
 UINT32 sessionBufferSize, // IN: size of session buffer
 BYTE *parmBufferStart, // IN: start of parameter buffer
 UINT32 parmBufferSize // IN: size of parameter buffer
)
{
 [...]
 // Decrypt the first parameter if applicable. This should be the last operation
 // in session processing.
[1] if(s_decryptSessionIndex != UNDEFINED_INDEX){
 [...]
 size = DecryptSize(commandCode);
[2] result = CryptParameterDecryption(
 s_sessionHandles[s_decryptSessionIndex],
 &s_nonceCaller[s_decryptSessionIndex].b,
[3] parmBufferSize, (UINT16)size,
 &extraKey,
[4] parmBufferStart);

4. CVE-2023-1017 and CVE-2023-1018

45/87

CryptUtil.c
// This function does in-place decryption of a command parameter.
TPM_RC
CryptParameterDecryption(
 TPM_HANDLE handle, // IN: encrypted session handle
 TPM2B *nonceCaller, // IN: nonce caller
 UINT32 bufferSize, // IN: size of parameter buffer
 UINT16 leadingSizeInByte, // IN: the size of the leading size field in byte
 TPM2B_AUTH *extraKey, // IN: the authValue
 BYTE *buffer // IN/OUT: parameter buffer to be decrypted
)
{
 [...]
 // The first two bytes of the buffer are the size of the
 // data to be decrypted
[1] cipherSize = (UINT32)BYTE_ARRAY_TO_UINT16(buffer);
[2] buffer = &buffer[2]; // advance the buffer
 [...]

swap.h

#define BYTE_ARRAY_TO_UINT16(b) (UINT16)(((b)[0] << 8) \
 + (b)[1])

4. CVE-2023-1017 and CVE-2023-1018

46/87

Bug #1 - OOB read in CryptParameterDecryption function (CVE-2023-1018)

● CryptParameterDecryption function in CryptUtil.c uses the BYTE_ARRAY_TO_UINT16 macro to

read a 16-bit field (cipherSize) from the buffer pointed by parmBufferStart without checking if

there's any parameter data past the session area.

4. CVE-2023-1017 and CVE-2023-1018

47/87

Bug #1 - OOB read in CryptParameterDecryption function (CVE-2023-1018)

● CryptParameterDecryption function in CryptUtil.c uses the BYTE_ARRAY_TO_UINT16 macro to

read a 16-bit field (cipherSize) from the buffer pointed by parmBufferStart without checking if

there's any parameter data past the session area.

● If a malformed command doesn't contain a parameterArea past the sessionArea, it will trigger

an out-of-bounds memory read, making the TPM access memory past the end of the

command.

4. CVE-2023-1017 and CVE-2023-1018

48/87

Bug #1 - OOB read in CryptParameterDecryption function (CVE-2023-1018)

● CryptParameterDecryption function in CryptUtil.c uses the BYTE_ARRAY_TO_UINT16 macro to

read a 16-bit field (cipherSize) from the buffer pointed by parmBufferStart without checking if

there's any parameter data past the session area.

● If a malformed command doesn't contain a parameterArea past the sessionArea, it will trigger

an out-of-bounds memory read, making the TPM access memory past the end of the

command.

● The UINT16_Unmarshal function should have been used instead, which performs proper size

checks before reading from a given buffer.

4. CVE-2023-1017 and CVE-2023-1018

49/87

4. CVE-2023-1017 and CVE-2023-1018

50/87

Bug #1 - OOB read in CryptParameterDecryption function (CVE-2023-1018)

TPM_RC uint16_t_Unmarshal(uint16_t* target, BYTE** buffer, INT32* size) {
 uint16_t value_net = 0;
 if (!size || *size < sizeof(uint16_t)) {
 return TPM_RC_INSUFFICIENT;
 }
 memcpy(&value_net, *buffer, sizeof(uint16_t));
 switch (sizeof(uint16_t)) {
 case 2:
 *target = be16toh(value_net);
 break;
 case 4:
 *target = be32toh(value_net);
 break;
 case 8:
 *target = be64toh(value_net);
 break;
 default:
 *target = value_net;
 }
 *buffer += sizeof(uint16_t);
 *size -= sizeof(uint16_t);
 return TPM_RC_SUCCESS;

4. CVE-2023-1017 and CVE-2023-1018

51/87

Step 1) - Start Auth Session

4. CVE-2023-1017 and CVE-2023-1018

52/87

Step 2) - Auth Response

4. CVE-2023-1017 and CVE-2023-1018

53/87

Step 3) - Create Primary with no Parameter Area

4. CVE-2023-1017 and CVE-2023-1018

54/87

Part 4.2

Bug #2 - OOB write in CryptParameterDecryption function (CVE-2023-

1017)

4. CVE-2023-1017 and CVE-2023-1018

CryptUtil.c
// This function does in-place decryption of a command parameter.
TPM_RC
CryptParameterDecryption(
 TPM_HANDLE handle, // IN: encrypted session handle
 TPM2B *nonceCaller, // IN: nonce caller
 UINT32 bufferSize, // IN: size of parameter buffer
 UINT16 leadingSizeInByte, // IN: the size of the leading size field in byte
 TPM2B_AUTH *extraKey, // IN: the authValue
 BYTE *buffer // IN/OUT: parameter buffer to be decrypted
)
{
 [...]
 // The first two bytes of the buffer are the size of the
 // data to be decrypted
[1] cipherSize = (UINT32)BYTE_ARRAY_TO_UINT16(buffer);
[2] buffer = &buffer[2]; // advance the buffer
 [...]

(continues next slide)

4. CVE-2023-1017 and CVE-2023-1018

56/87

(continued)

[...]
[3] if(cipherSize > bufferSize)
 return TPM_RC_SIZE;
 // Compute decryption key by concatenating sessionAuth with extra input key
 MemoryCopy2B(&key.b, &session->sessionKey.b, sizeof(key.t.buffer));
 MemoryConcat2B(&key.b, &extraKey->b, sizeof(key.t.buffer));
 if(session->symmetric.algorithm == TPM_ALG_XOR)
 // XOR parameter decryption formulation:
 // XOR(parameter, hash, sessionAuth, nonceNewer, nonceOlder)
 // Call XOR obfuscation function
[4] CryptXORObfuscation(session->authHashAlg, &key.b, nonceCaller,
 &(session->nonceTPM.b), cipherSize, buffer);
 else
 // Assume that it is one of the symmetric block ciphers.
[5] ParmDecryptSym(session->symmetric.algorithm, session->authHashAlg,
 session->symmetric.keyBits.sym,
 &key.b, nonceCaller, &session->nonceTPM.b,
 cipherSize, buffer);
 return TPM_RC_SUCCESS;
}

4. CVE-2023-1017 and CVE-2023-1018

57/87

Bug #2 - OOB write in CryptParameterDecryption function (CVE-2023-

1017)

● If a proper parameterArea is provided (avoiding bug #1), the first two bytes of it are interpreted

as the size of the data to be decrypted (cipherSize), and the buffer pointer is advanced by 2.

● There's an attempt of a sanity check: if cipherSize value is greater than the actual size of

parameterArea, then it bails out.

● But there's a problem here: after reading the cipherSize 16-bit field and advancing the buffer

pointer by 2, the function forgets to subtract 2 from bufferSize, to account for the 2 bytes that

were already processed.

4. CVE-2023-1017 and CVE-2023-1018

58/87

Bug #2 - OOB write in CryptParameterDecryption function (CVE-2023-

1017)

● It's possible to pass the sanity check with a cipherSize value that is larger by 2 than the actual

size of the remaining data.

● As a consequence, when either CryptXORObfuscation() or ParmDecryptSym() are called to

decrypt the data in the parameterArea following the cipherSize field, the TPM ends up writing

2 bytes past the end of the buffer, resulting in an out-of-bounds write.

4. CVE-2023-1017 and CVE-2023-1018

59/87

State before parsing Parameter Area

4. CVE-2023-1017 and CVE-2023-1018

60/87

Expected state after parsing cipherSize

4. CVE-2023-1017 and CVE-2023-1018

61/87

Actual state after parsing cipherSize

4. CVE-2023-1017 and CVE-2023-1018

62/87

This state becomes valid!

4. CVE-2023-1017 and CVE-2023-1018

63/87

Step 1) - Start Auth Session

4. CVE-2023-1017 and CVE-2023-1018

64/87

Step 2) - Auth Response

4. CVE-2023-1017 and CVE-2023-1018

65/87

Step 3) - Create Primary with crafted paramSize

4. CVE-2023-1017 and CVE-2023-1018

66/87

Part 4.3

Impact of the vulnerabilities

4. CVE-2023-1017 and CVE-2023-1018

1 - Impact of the OOB read

● Function CryptParameterDecryption in CryptUtil.c can read 2 bytes past the end of the

received TPM command. If an affected TPM doesn't zero out the command buffer between

received commands, it can result in the affected function reading whatever 16-bit value was

already there from a previous command.

4. CVE-2023-1017 and CVE-2023-1018

68/87

1 - Impact of the OOB read

● Function CryptParameterDecryption in CryptUtil.c can read 2 bytes past the end of the

received TPM command. If an affected TPM doesn't zero out the command buffer between

received commands, it can result in the affected function reading whatever 16-bit value was

already there from a previous command.

● This is dependant on each implementation.

4. CVE-2023-1017 and CVE-2023-1018

69/87

2 - Impact of the OOB write

● Functions CryptXORObfuscation/ParmDecryptSym in CryptUtil.c (called from

CryptParameterDecryption) can write 2 bytes past the end of the command buffer, resulting in

memory corruption.

4. CVE-2023-1017 and CVE-2023-1018

70/87

2 - Impact of the OOB write

● Functions CryptXORObfuscation/ParmDecryptSym in CryptUtil.c (called from

CryptParameterDecryption) can write 2 bytes past the end of the command buffer, resulting in

memory corruption.

● The chances of having something useful to overwrite adjacent to the command buffer depend

on how each implementation allocates the buffer that receives TPM commands.

4. CVE-2023-1017 and CVE-2023-1018

71/87

2 - Impact of the OOB write

● Functions CryptXORObfuscation/ParmDecryptSym in CryptUtil.c (called from

CryptParameterDecryption) can write 2 bytes past the end of the command buffer, resulting in

memory corruption.

● The chances of having something useful to overwrite adjacent to the command buffer depend

on how each implementation allocates the buffer that receives TPM commands.

● SWTPM (QEMU) uses malloc() to allocate a command buffer of size 0x1008 (8 bytes for a send

command prefix that can be used to modify the locality, plus 0x1000 bytes for the maximum TPM

command size).

4. CVE-2023-1017 and CVE-2023-1018

72/87

2 - Impact of the OOB write

● Worst case scenario: OOB write ⟶ code execution on the TPM

● VM escape in the case of a virtual TPM

4. CVE-2023-1017 and CVE-2023-1018

73/87

2 - Impact of the OOB write

● Worst case scenario: OOB write ⟶ code execution on the TPM

● VM escape in the case of a virtual TPM

● Corrupting TPM memory containing sensitive data such as a key

4. CVE-2023-1017 and CVE-2023-1018

74/87

2 - Impact of the OOB write

● Worst case scenario: OOB write ⟶ code execution on the TPM

● VM escape in the case of a virtual TPM

● Corrupting TPM memory containing sensitive data such as a key

● A DoS can cause enough trouble:

● Failure for full disk encryption solutions relying on the TPM

● Failure to perform boot attestation

4. CVE-2023-1017 and CVE-2023-1018

75/87

Part 5

Disclosure Details

4. CVE-2023-1017 and CVE-2023-1018

Disclosure Details

● Industry-wide disclosure process, with many parties involved.

● Iván Arce handled it from Quarkslab's side.

● Coordinated via US CERT/CC.

● CERT/CC granted access to the vulnerability report to 1600 vendors.

● Reason: several PC OEM and hardware vendors expressed interest in reaching out to other vendors

up and down their supply chain.

● Google pushed the fix to a Chromium OS public repository before embargo ended.

● Huawei's OpenEuler Linux distribution made the vulnerability report available on its public

issue tracker.

5. Disclosure Details

77/87

Disclosure Details

● Some hardware vendors reported that their products were not affected.

● Hard to verify due to the lack of debugging/monitoring capabilities.

● If they identified and fixed the bugs beforehand, they never reported them to TCG.

● Vulnerable status remains unknown for several hardware vendors (see

https://kb.cert.org/vuls/id/782720)

5. Disclosure Details

78/87

https://kb.cert.org/vuls/id/782720

Part 6

Conclusions

5. Disclosure Details

Conclusions (1)

● Every TPM (either software or hardware implementations) whose firmware is based on the

reference code published by the Trusted Computing Group is expected to be affected by

these two vulnerabilities.

● This includes the two main open source implementations available: Microsoft's and IBM's.

6. Conclusions

80/87

Conclusions (1)

● Every TPM (either software or hardware implementations) whose firmware is based on the

reference code published by the Trusted Computing Group is expected to be affected by

these two vulnerabilities.

● This includes the two main open source implementations available: Microsoft's and IBM's.

● Although all affected TPMs share the exact same vulnerable function, the likeliness of

successful exploitation depends on how the command buffer is implemented, and that part is

left to each implementation.

● Everyone seems to do it in a different way.

6. Conclusions

81/87

Conclusions (2)

● We were able to verify that these vulnerabilities were present in the software TPMs included in

major desktop virtualization solutions, both free and non-free.

● SWTPM (based on libtpms, used by QEMU) case looked dangerous (I haven't checked VirtualBox).

6. Conclusions

82/87

Conclusions (2)

● We were able to verify that these vulnerabilities were present in the software TPMs included in

major desktop virtualization solutions, both free and non-free.

● SWTPM (based on libtpms, used by QEMU) case looked dangerous (I haven't checked VirtualBox).

● Virtual TPMs available in the biggest cloud computing providers were also likely affected.

● Google Cloud uses the IBM version of the reference implementation, which was affected.

● Microsoft Azure is based on Microsoft's Hyper-V, which was affected.

6. Conclusions

83/87

Conclusions (3)

● We confirmed the OOB write in a Dell machine with a Nuvoton hardware TPM.

● Dell Latitude E5570 with Nuvoton NPCT65x, firmware version 1.3.0.1

● After triggering the bug, the chip would stop responding to further commands, and required a hard

reboot of the computer to be operational again.

6. Conclusions

84/87

Conclusions (3)

● We confirmed the OOB write in a Dell machine with a Nuvoton hardware TPM.

● Dell Latitude E5570 with Nuvoton NPCT65x, firmware version 1.3.0.1

● After triggering the bug, the chip would stop responding to further commands, and required a hard

reboot of the computer to be operational again.

● We expected most TPM hardware vendors to be affected too.

● The lack of debugging capabilities in the TPM environment makes it harder to confirm the presence of

vulnerabilities.

6. Conclusions

85/87

Conclusions (4)

● Reference implementations deserve special attention, security-wise.

● Vulnerabilities in reference implementation code spread across diverse codebases, and may end up

biting everyone.

6. Conclusions

86/87

Questions?

https://www.quarkslab.com/

