
For Science!
Using an Unimpressive Bug in EDK II To Do Some Fun Exploitation

Gwaby

https://www.quarkslab.com/

Whoami

● Reverse Engineer

● @ Quarkslab [*]

● Desktop & Virtualization team

● Vuln research

● R&D

[*]: We're hiring & the job is fun!

Agenda

1. Some Generalities (a.k.a Boring Section)

2. The Bug (a.k.a Kind of Okay Stuff)

3. Exploitation (a.k.a Wanna Be Fun Part)

Introduction

2/76

Introduction

Some Generalities

Introduction

● Unified Extensible Firmware Interface

● Replace old (16-bit x86) BIOS technology

● Initialize the platform hardware

● Report information to the OS

● EDK II

● Maintained by TianoCore

● Main implementation of UEFI standard

● Code base for various OEMs

● Open source, mainly in C

UEFI

https://github.com/tianocore/edk2

Introduction

4/76

https://github.com/tianocore/edk2

● Special purpose and isolated operating

mode (Ring -2)

● Defined in IA CPU architecture

● Highest privilege

● Greatest access to system memory and hardware

resources

● Handle critical functions

● Partially in charge of protecting the boot using

hardware resources

System Management Mode (SMM)

● Code and data running in SMM located in SMRAM

● Special protected memory region

Introduction

5/76

System Management Mode (SMM)

Entering and Exiting SMM

● System Management Interrupt (SMI)

● CPU switchs into SMM

● Jump to pre-defined entry vector

● Save previous context (save states)

● Returns to normal world with RSM instruction

● 2 ways of communications between SMM and normal world

● through ACPI table

● through EFI_SMM_COMMUNICATION_PROTOCOL protocol

● API-like function in EFI

Introduction

6/76

System Management Mode (SMM)

EFI_SMM_COMMUNICATION_PROTOCOL protocol

● Provides runtime communication services between drivers outside of SMM and a SMI handler

Introduction

7/76

System Management Mode (SMM)

UEFI ACPI table

● Describes a special software SMI

● Generated using I/O resources or CPU instructions

● Used by any non-firmware component

● Data address is recorded in the ACPI table or via a general purpose register

Introduction

8/76

Tcg2Smm

Securing SMM Communications

● Two "main" best practices when developping a SMI handler

● Copy of the comm buffer in a temporary variable

● To prevent TOC/TOU attacks

● Use SmmIsBufferOutsideSmmValid() API

● check if a comm buffer is valid per processor architecture and not overlap with SMRAM.

Introduction

9/76

The Bug!

Introduction

Tcg2Smm

● (Continuing) reading about SMM communication

● A Tour Beyond BIOS Secure SMM Communication white paper (page 8)

● TL.DR.

● Data structure allocated in ACPI NVS region by PublishAcpiTable()

● Pointer saved in SMRAM and used in other SWSMI

● Check the git (Tcg2Smm.c) for more details

● (ASL == ACPI Source Language)

The Bug

11/76

$ git clone edk2
$ cd edk2/SecurityPkg/Tcg/Tcg2Smm
$ grep PublishAcpiTable Tcg2Smm.c

Tcg2Smm

The Bug

12/76

$ git clone edk2
$ cd edk2/SecurityPkg/Tcg/Tcg2Smm
$ grep PublishAcpiTable Tcg2Smm.c
$

... :|

● No PublishAcpiTable() in Tcg2Smm.c

Tcg2Smm

The Bug

13/76

$ git clone edk2
$ cd edk2/SecurityPkg/Tcg/Tcg2Smm
$ grep PublishAcpiTable Tcg2Smm.c
$

... :|

● No PublishAcpiTable() in Tcg2Smm.c

Tcg2Smm

● But it was here!

● commit cd64301 on Jun 8, 2016

EFI_STATUS PublishAcpiTable (VOID)
{
// [...]

mTcgNvs = AssignOpRegion (Table, SIGNATURE_32 ('T', 'N', 'V', 'S'),
 (UINT16) sizeof (TCG_NVS));
ASSERT (mTcgNvs != NULL);
}

The Bug

14/76

Tcg2Smm

Ok, but how about now?

//Communication service SMI Handler entry.
//This handler takes requests to exchange Mmi channel and Nvs address between MM and
//DXE.

//Caution: This function may receive untrusted input.
//Communicate buffer and buffer size are external input, so this function will do basic
//validation.
EFI_STATUS EFIAPI TpmNvsCommunciate (/* [...] */)
{
 // [...]
 if (!IsBufferOutsideMmValid ((UINTN)CommBuffer, TempCommBufferSize)) {
 return EFI_ACCESS_DENIED;
 }
 CommParams = (TPM_NVS_MM_COMM_BUFFER *)CommBuffer;
 mTcgNvs = (TCG_NVS *)(UINTN)CommParams->TargetAddress;
 // [...]
}

● Done through EFI_SMM_COMMUNICATION_PROTOCOL protocol

The Bug

15/76

Tcg2Smm

Ok, but how about now?

The Bug

16/76

#pragma pack(1)

typedef struct {
 PHYSICAL_PRESENCE_NVS PhysicalPresence;
 MEMORY_CLEAR_NVS MemoryClear;
 UINT32 PPRequestUserConfirm;
 UINT32 TpmIrqNum;
 BOOLEAN IsShortFormPkgLength;
} TCG_NVS;

● Used by two other SWSMI callbacks

● PhysicalPresence

● MemoryClear

typedef struct {
 UINT8 SoftwareSmi;
 UINT32 Parameter;
 UINT32 Response;
 UINT32 Request;
 UINT32 RequestParameter;
 UINT32 LastRequest;
 UINT32 ReturnCode;
} PHYSICAL_PRESENCE_NVS;

typedef struct {
 UINT8 SoftwareSmi;
 UINT32 Parameter;
 UINT32 Request;
 UINT32 ReturnCode;
} MEMORY_CLEAR_NVS;

TCG_NVS

The Bug

17/76

Tcg2Smm SWSMI callbacks

● Can be resumed as two big switchs

● Actions depends on the Parameter field

● Example

EFI_STATUS EFIAPI MemoryClearCallback (/* [...] */)
{
 EFI_STATUS Status;
 UINTN DataSize;
 UINT8 MorControl;

 mTcgNvs->MemoryClear.ReturnCode = MOR_REQUEST_SUCCESS;
 if (mTcgNvs->MemoryClear.Parameter == ACPI_FUNCTION_DSM_MEMORY_CLEAR_INTERFACE) {
 MorControl = (UINT8)mTcgNvs->MemoryClear.Request;
 } else if (mTcgNvs->MemoryClear.Parameter == ACPI_FUNCTION_PTS_CLEAR_MOR_BIT) {
 // [...]
 }
}

The Bug

18/76

PhysicalPresence callback

Where XX indicates that the value is retrieved from

a non-volatile variable (Tcg2PhysicalPresence).

MemoryClear callback

Tcg2Smm SWSMI callbacks - Outcome

The Bug

19/76

PhysicalPresence callback

Where XX indicates that the value is retrieved from

a non-volatile variable (Tcg2PhysicalPresence).

MemoryClear callback

Woot loot!

Sooooo... Arbitrary write in SMRAM

==> God mode (almost) activated?? \o/

Tcg2Smm SWSMI callbacks - Outcome

The Bug

20/76

Tcg2Smm SWSMI callbacks - Outcome

Errrh, yes and no...

● TpmNvsCommunciate SMI unregistered when gEfiMmReadyToLockProtocolGuid is published :'(

● Registers notification callback for the "ready to lock" protocol

● Prevent use by the third party code

● Happens just after the SMM End of DXE Protocol

● Completly removes the SMI handler

● Cannot modify the mTcgNvs after that

The Bug

21/76

UEFI Boot Phases

The Bug

22/76

● Primitive quite limited

● Can only write 4 fixed bytes

● Depending on the value present in the

"Parameter" field

● Easiest to control -> default case while

triggering MemoryClearCallback

● Write 0x00000001 (almost) anywhere in SMRAM

Predicates

● We have another vuln allowing us to block the deletion

of the SMI handler

● SecureBoot is disabled

● We can load an arbitrary UEFI application

Let's forget about that

The Bug

23/76

Exploitation

The Bug

Target

● We need to find a firmware with the flaw inside...

Exploitation

25/76

Target

● We need to find a firmware with the flaw inside...

● We can just use OVMF

Exploitation

26/76

Target

● We need to find a firmware with the flaw inside...

● We can just use OVMF

● The SWSMI are not implemented in OVMF

Exploitation

27/76

Target

● We need to find a firmware with the flaw inside...

● We can just use OVMF

● The SWSMI are not implemented in OVMF

● Let's use some development board

Exploitation

28/76

Target

● We need to find a firmware with the flaw inside...

● We can just use OVMF

● The SWSMI are not implemented in OVMF

● Let's use some development board

● This is related to a hardware component

Exploitation

29/76

Target

● We need to find a firmware with the flaw inside...

● We can just use OVMF

● The SWSMI are not implemented in OVMF

● Let's use some development board

● This is related to a hardware component

● Let's buy a f*cking TPM for the dev board then!

Exploitation

30/76

Target

● We need to find a firmware with the flaw inside...

● We can just use OVMF

● The SWSMI are not implemented in OVMF

● Let's use some development board

● This is related to a hardware component

● Let's buy a f*cking TPM for the dev board then!

● Most of the boards are sold out and it is so looong to order stuff, I want to test it naow! ;_;

Exploitation

31/76

Target

● We need to find a firmware with the flaw inside...

● We can just use OVMF

● The SWSMI are not implemented in OVMF

● Let's use some development board

● This is related to a hardware component

● Let's buy a f*cking TPM for the dev board then!

● Most of the boards are sold out and it is so looong to order stuff, I want to test it naow! ;_;

F*ck this shit

● Let's adapt the SMM driver for OVMF

Exploitation

32/76

● Change both SWSMI callbacks into root SMI

handlers

● Called for every SMI event

● Hardcode the SMI IDs in the SMM driver

● Filter the requests by checking the SMI IDs

● Change the load dependancies

● Remove the SWSMI dispatcher

● Add the module responsible for catching the

SMI IDs

Target

Adaptation

Exploitation

33/76

4-byte Write Primitive to Arbitrary Read-Write Primitive

What we have

● Can write 0x00000001 anywhere in SMRAM

● Change the value of mTcgNvs with the SMI callback

● Trigger the MemoryClear SWSMI callback

Exploitation

34/76

4-byte Write Primitive to Arbitrary Read-Write Primitive

What we have

● Can write 0x00000001 anywhere in SMRAM

● Change the value of mTcgNvs with the SMI callback

● Trigger the MemoryClear SWSMI callback

Goal

● Read and Write anything anywhere in SMRAM \o/

Exploitation

35/76

4-byte Write Primitive to Arbitrary Read-Write Primitive

What we have

● Can write 0x00000001 anywhere in SMRAM

● Change the value of mTcgNvs with the SMI callback

● Trigger the MemoryClear SWSMI callback

Goal

● Read and Write anything anywhere in SMRAM \o/

Restriction

● Only use what is provided by EDK2

Exploitation

36/76

4-byte Write Primitive to Arbitrary Read-Write Primitive

What we have

● Can write 0x00000001 anywhere in SMRAM

● Change the value of mTcgNvs with the SMI callback

● Trigger the MemoryClear SWSMI callback

Goal

● Read and Write anything anywhere in SMRAM \o/

Restriction

● Only use what is provided by EDK2

● Let's corrupt some global variables

● SmmLockBox!

Exploitation

37/76

● Power saving feature

● Set of power state of transition (defined in ACPI

specification)

● 4 states in the sleeping group

● S3 sleeping state -> "suspend to memory"

● Restore the platform to its pre-boot

configuration

● Avoid dealing with the DXE phase

SmmLockBox

S3 Resume

Exploitation

38/76

● Data stored in memory might be tampered if

left unprotected

● Container that maintains the integrity of data

● But not the confidentiality

● EDKII implementation based on SMM

SmmLockBox

LockBox

Exploitation

39/76

● Useful API

● SaveLockBox() - copy data to LockBox

● UpdateLockBox() - update data in LockBox

● SetLockBoxAttributes() - set LockBox

attributes

● RestoreLockBox() – get data from LockBox and

copy it in a buffer, or at its original address

● Reachable throught the communicate

protocol

● gEfiSmmLockBoxCommunicationGuid

SmmLockBox

Could become a perfect R/W primitive <3

Exploitation

40/76

SmmLockBox

4-byte Write Primitive to Arbitrary Read-Write Primitive

● Want to use SmmLockBox API to R/W in SMRAM

Problem

● SmmLockBox API protected with SmmIsBufferOutsideSmmValid

● SaveLockBox(), SmmLockBoxSetAttributes & UpdateLockBox() locked at the end of DXE phase

Exploitation

41/76

SmmIsBufferOutsideSmmValid

BOOLEAN EFIAPI SmmIsBufferOutsideSmmValid (
 IN EFI_PHYSICAL_ADDRESS Buffer,
 IN UINT64 Length
)

● Implemented in SmmMemLib library

● Statically linked in SMM modules using it

● Ensures that the buffer:

1. Is within a valid range of address

2.Doesn't overlap with SMRAM

3. Is inside the region intended for communication buffer

4. Is not in a memory region labelled as "untested"

5. Is not on a RO memory page

Exploitation

42/76

SmmIsBufferOutsideSmmValid

BOOLEAN EFIAPI SmmIsBufferOutsideSmmValid (
 IN EFI_PHYSICAL_ADDRESS Buffer,
 IN UINT64 Length
)

● Implemented in SmmMemLib library

● Statically linked in SMM modules using it

● Ensures that the buffer:

1. Is within a valid range of address

2.Doesn't overlap with SMRAM

3. Is inside the region intended for communication buffer

4. Is not in a memory region labelled as "untested"

5. Is not on a RO memory page

Exploitation

43/76

SmmIsBufferOutsideSmmValid

SMRAM Overlap Verification

BOOLEAN EFIAPI SmmIsBufferOutsideSmmValid (
 IN EFI_PHYSICAL_ADDRESS Buffer,
 IN UINT64 Length
)
{
// [...]
 for (Index = 0; Index < mSmmMemLibInternalSmramCount; Index++) {
 if (((Buffer >= mSmmMemLibInternalSmramRanges[Index].CpuStart)
 && (Buffer < mSmmMemLibInternalSmramRanges[Index].CpuStart + mSmmMemLibInternalSmramRanges[Index].PhysicalSize))
 || ((mSmmMemLibInternalSmramRanges[Index].CpuStart >= Buffer)
 && (mSmmMemLibInternalSmramRanges[Index].CpuStart < Buffer + Length)))
 {
 return FALSE;
 }
 }
// [...]
}

● Loops through all entries in mSmmMemLibInternalSmramRanges

● Quits if the buffer overlaps one region

● Continue with other tests if no match found

Exploitation

44/76

typedef struct {
 EFI_PHYSICAL_ADDRESS PhysicalStart;
 EFI_PHYSICAL_ADDRESS CpuStart;
 UINT64 PhysicalSize;
 UINT64 RegionState;
} EFI_MMRAM_DESCRIPTOR;

// RegionState == accessibility attributes of the SMRAM

typedef EFI_MMRAM_DESCRIPTOR EFI_SMRAM_DESCRIPTOR;

● Table content

● (dumped when running OVMF)

PhysicalStart CpuStart PhysicalSize RegionState

0x7000000 0x7000000 0x001000
EFI_ALLOCATED

EFI_CACHEABLE

0x7001000 0x7001000 0xFFF000 EFI_CACHEABLE

SmmIsBufferOutsideSmmValid

SMRAM Overlap Verification

● mSmmMemLibInternalSmramRanges

● EFI_SMRAM_DESCRIPTOR: describing a SMRAM region and its accessibility attributes

Exploitation

45/76

typedef struct {
 EFI_PHYSICAL_ADDRESS PhysicalStart;
 EFI_PHYSICAL_ADDRESS CpuStart;
 UINT64 PhysicalSize;
 UINT64 RegionState;
} EFI_MMRAM_DESCRIPTOR;

// RegionState == accessibility attributes of the SMRAM

typedef EFI_MMRAM_DESCRIPTOR EFI_SMRAM_DESCRIPTOR;

● Table content

● (dumped when running OVMF)

PhysicalStart CpuStart PhysicalSize RegionState

0x7000000 0x7000000 0x001000
EFI_ALLOCATED

EFI_CACHEABLE

0x7001000 0x7001000 0xFFF000 EFI_CACHEABLE

SmmIsBufferOutsideSmmValid

SMRAM Overlap Verification

● mSmmMemLibInternalSmramRanges

● EFI_SMRAM_DESCRIPTOR: describing a SMRAM region and its accessibility attributes

● Overwrite mSmmMemLibInternalSmramCount with 0x00000001 to dodge the check :D

Exploitation

46/76

SmmLockBox

4-byte Write Primitive to Arbitrary Read-Write Primitive

Problem

● SmmLockBox API protected with SmmIsBufferOutsideSmmValid

● SaveLockBox(), SmmLockBoxSetAttributes & UpdateLockBox() locked

Exploitation

47/76

EFI_STATUS
EFIAPI
SmmReadyToLockEventNotify (
 IN CONST EFI_GUID *Protocol,
 IN VOID *Interface,
 IN EFI_HANDLE Handle
)
{
 mLocked = TRUE;
 return EFI_SUCCESS;
}

VOID
SmmLockBoxSave (/* [...] */)
{
 // [...]

 if (mLocked) {
 DEBUG ((DEBUG_ERROR, "SmmLockBox Locked!\n"));
 LockBoxParameterSave->Header.ReturnStatus = \
 EFI_ACCESS_DENIED;
 return;
 }

 // [...]
}

SmmLockBox

mLocked Variable

● Prevent data manipulation after on runtime

● Same notification event as Tcg2Smm.efi

● Smm Ready To Lock event (gEfiSmmReadyToLockProtocolGuid)

Exploitation

48/76

SmmLockBox

mLocked Variable

No worries

● We can just overwrite it too and voilà!

Exploitation

49/76

SmmLockBox

mLocked Variable

No worries

● We can just overwrite it too and voilà!

Not quite...

Exploitation

50/76

● Should we just recompile it?

● Nah, that's cheated...

● Need to find something else

SmmLockBox

mLocked Variable

No worries

● We can just overwrite it too and voilà!

Not quite...

Exploitation

51/76

Interlude

New goal: Transform the "write 4-fixed-bytes anywhere" into "write zero anywhere"

Exploitation

52/76

● Provides information on platform initialization

performance records during boot

● Used to track performance of each UEFI

phase

● Also useful for tracking impacts from

changes in hardware/software configuration

Interlude

New goal: Transform the "write 4-fixed-bytes anywhere" into "write zero anywhere"

ACPI Firmware Performance Data Table

Exploitation

53/76

EFI_STATUS
EFIAPI
FpdtSmiHandler (
 IN EFI_HANDLE DispatchHandle,
 IN CONST VOID *RegisterContext,
 IN OUT VOID *CommBuffer,
 IN OUT UINTN *CommBufferSize
)

typedef struct {
 UINTN Function;
 EFI_STATUS ReturnStatus;
 UINTN BootRecordSize;
 VOID *BootRecordData;
 UINTN BootRecordOffset;
} SMM_BOOT_RECORD_COMMUNICATE;

ACPI Firmware Performance Data Table

● Table in SMRAM

● Registers a SMI handler

● gEfiFirmwarePerformanceGuid

● Returns (depends on Function field)

● FPDT size

● Chunks of the table

● By specifying the offset and size requested

Exploitation

54/76

ACPI Firmware Performance Data Table

FS0:\EFI\Tools\tcg2\> Python368.efi dump_fpdt.py
 ----- Get Performance Data Size -----
 FPDT Size: 0x4c0
 ----- Dump Performance Data -----
 00000000: 13 10 2A 01 03 00 00 00 00 00 BD B0 D0 ED 00 00 ..*.............
 00000010: 00 00 D8 E2 7E A4 0E F6 FD 42 8E 58 7B D6 5E E4 ~....B.X{.^.
 00000020: C2 9B 01 00 00 00 00 00 00 00 13 10 2A 01 04 00 *...
 00000030: 00 00 00 00 47 49 CF F0 00 00 00 00 D8 E2 7E A4 GI........~.
 00000040: 0E F6 FD 42 8E 58 7B D6 5E E4 C2 9B 01 00 00 00 ...B.X{.^.......
 00000050: 00 00 00 00 10 10 22 01 01 00 00 00 00 00 81 92 ".........
 00000060: 46 F2 00 00 00 00 D8 E2 7E A4 0E F6 FD 42 8E 58 F.......~....B.X
 ...

Exploitation

55/76

ACPI Firmware Performance Data Table

FS0:\EFI\Tools\tcg2\> Python368.efi dump_fpdt.py
 ----- Get Performance Data Size -----
 FPDT Size: 0x4c0
 ----- Dump Performance Data -----
 00000000: 13 10 2A 01 03 00 00 00 00 00 BD B0 D0 ED 00 00 ..*.............
 00000010: 00 00 D8 E2 7E A4 0E F6 FD 42 8E 58 7B D6 5E E4 ~....B.X{.^.
 00000020: C2 9B 01 00 00 00 00 00 00 00 13 10 2A 01 04 00 *...
 00000030: 00 00 00 00 47 49 CF F0 00 00 00 00 D8 E2 7E A4 GI........~.
 00000040: 0E F6 FD 42 8E 58 7B D6 5E E4 C2 9B 01 00 00 00 ...B.X{.^.......
 00000050: 00 00 00 00 10 10 22 01 01 00 00 00 00 00 81 92 ".........
 00000060: 46 F2 00 00 00 00 D8 E2 7E A4 0E F6 FD 42 8E 58 F.......~....B.X
 ...

● Plenty of 0x00 \o/

● Possibility to ask for 1 byte at any offset in the table

Exploitation

56/76

ACPI Firmware Performance Data Table

FS0:\EFI\Tools\tcg2\> Python368.efi dump_fpdt.py
 ----- Get Performance Data Size -----
 FPDT Size: 0x4c0
 ----- Dump Performance Data -----
 00000000: 13 10 2A 01 03 00 00 00 00 00 BD B0 D0 ED 00 00 ..*.............
 00000010: 00 00 D8 E2 7E A4 0E F6 FD 42 8E 58 7B D6 5E E4 ~....B.X{.^.
 00000020: C2 9B 01 00 00 00 00 00 00 00 13 10 2A 01 04 00 *...
 00000030: 00 00 00 00 47 49 CF F0 00 00 00 00 D8 E2 7E A4 GI........~.
 00000040: 0E F6 FD 42 8E 58 7B D6 5E E4 C2 9B 01 00 00 00 ...B.X{.^.......
 00000050: 00 00 00 00 10 10 22 01 01 00 00 00 00 00 81 92 ".........
 00000060: 46 F2 00 00 00 00 D8 E2 7E A4 0E F6 FD 42 8E 58 F.......~....B.X
 ...

● Plenty of 0x00 \o/

● Possibility to ask for 1 byte at any offset in the table

● Need to get rid of SmmIsBufferOutsideSmmValid again

Exploitation

57/76

Let's Rewind

4-fixed byte Write Primitive to (almost) Arbitrary Write Primitive

● Bypass of SmmIsBufferOutsideSmmValid in PiSmmCore.efi

● Used by Firmware Performance Data Table SMI handler

● gEfiFirmwarePerformanceGuid

Overwrite of mSmmMemLibInternalSmramCount with Tcg2Smm bug

(almost) Arbitrary Write Primitive to Arbitrary R/W Primitive

● Unlock SmmLockBox API

● Bypass of SmmIsBufferOutsideSmmValid in SmmLockBox.efi

● Use gEfiFirmwarePerformanceGuid SMI handler to write 0x00 in mLocked

● Overwrite of mSmmMemLibInternalSmramCount with either Tcg2Smm bug or gEfiFirmwarePerformanceGuid SMI handler

Exploitation

58/76

● SmmLockBox module reuse

● Buffer allocated and copied in SMRAM

● Doubly-linked list of saved LockBox

● stored in mLockBoxQueue globale variable

● Perfect way to store a shellcode :D

● Get mLockBoxQueue

● Retrieve the last inserted LockBox data buffer

● Execute & hourray

Arbitrary R/W to Code Execution

Shellcode Location

Exploitation

59/76

● Memory access protection

● Depending on the page usage

● Types allowed for allocation in SMM

● EfiRuntimeServicesData - access: RW-

● EfiRuntimeServicesCode - access: R-X

● Implemented at the page table entry level

● Activated if the SMM image is page aligned

Arbitrary R/W to Code Execution

Shellcode Location

Small issue

● LockBox buffer not executable :/

Exploitation

60/76

● Memory access protection

● Depending on the page usage

● Types allowed for allocation in SMM

● EfiRuntimeServicesData - access: RW-

● EfiRuntimeServicesCode - access: R-X

● Implemented at the page table entry level

● Activated if the SMM image is page aligned

Fun Fact

● Not the case on OVMF compiled with MSFT toolchain ;)

● Missing /ALIGN:4096 build option

Arbitrary R/W to Code Execution

Shellcode Location

Small issue

● LockBox buffer not executable :/

Exploitation

61/76

Find the page table entry

● CR3 value stored in mSmmProfileCr3

● Located in PiSmmCpuDxeSMM.efi

● # of level depending on the page size

● 4 levels for regular pages

● Entries can be protected with a mask

● AMD Secure Encrypted Virtualization

● may also be found in mAddressEncMask

Fix The Access Right

 AddressEncMask = PcdGet64 (PcdPteMemoryEncryptionAddressOrMask) & PAGING_1G_ADDRESS_MASK_64;
 // ...
 PageTable = Entry & ~AddressEncMask & PAGING_4K_ADDRESS_MASK_64;

Exploitation

62/76

Write Protect

● Page table entries in read only

● Bit 16 (WP) in CR0

● Can use AsmWriteCr0 function to fix it

UINTN EFIAPI AsmWriteCr0(UINTN Cr0)
{
 __asm__ __volatile__ (
 "movl %0, %%cr0"
 :
 : "r" (Cr0)
);
 return Cr0;
}

No Execute

● Bit 63 (NX) of the page entry value

● Need to set it to 0

● No shiny way beside doing it by hand :|

Fix The Access Right

Protection Removal

Exploitation

63/76

Fix The Access Right

Protection Removal

Wibbly-wobbly-grubby-magicky part of the exploit

● ROPGadget[1] on SMM modules

● Only focused on PiSmmCpuDxeSMM.efi actually

● ROPchain crafting

● 8 gadgets

● 2 function calls

● 1 globale variable corruption

● Et voila!

[1]: https://github.com/JonathanSalwan/ROPgadget

Exploitation

64/76

https://github.com/JonathanSalwan/ROPgadget

Execution

SMI Handler Registration

● SMI handlers registered with SmmiHandlerRegister (provided by the SMM System Table)

● Create a SMI_HANDLER object

● Add it to the double-linked list corresponding to its type

● defined by a SMI_ENTRY object in PiSmmCore.efi

Exploitation

65/76

Fake SMI handler

● Simply add a fake object in the SMI_ENTRY list

● Wait for a couple of (milli) seconds

● If in the root list

● Otherwise, need to call it

● Clean every thing

● Profit \o/

Execution

Exploitation

66/76

Exploitation

67/76

Conclusion

Conclusion

68/76

Conclusion

● Meh bug...

Conclusion

69/76

Conclusion

● Meh bug...

● Exploitation part really fun

Conclusion

70/76

Conclusion

● Meh bug...

● Exploitation part really fun

● Even better exploit presented at BlueHatIL by Benny Zeltser & Jonathan Lusky

● "RingHopper – Hopping from User-space to God Mode"

Conclusion

71/76

Conclusion

● Meh bug...

● Exploitation part really fun

● Even better exploit presented at BlueHatIL by Benny Zeltser & Jonathan Lusky

● "RingHopper – Hopping from User-space to God Mode"

● Thanks for listening anyway :)

Conclusion

72/76

Questions?

https://www.quarkslab.com/

● Initialized in the PiSmmCpuDxeSMM module

● Calculates the size necessary to reserve

● 0x10000 + TileSize * (number_of_cpu - 1)

● Allocates the SMBASE just after the module

● Use of SmmAllocatePages

● Takes the highest available page of memory

● Because nothing in the free list for now

● Get PiSmmCpuDxeSMM base address

● Through its protocol registration

gSmmCpuPrivate->SmmConfiguration

SmmLockBox

Lockation (pun intended)

Reuse of a wonderful technique[1] from Bruno Pujos (@BrunoPujos) to find the SMBASE

[1]: https://www.synacktiv.com/en/publications/through-the-smm-class-and-a-vulnerability-found-there.html

Annexes

74/76

https://www.synacktiv.com/en/publications/through-the-smm-class-and-a-vulnerability-found-there.html

● Actually we don't care about the SMBASE...

● But we do care about PiSmmCpuDxeSMM!

● One of the first SMM modules to be loaded at

boot time

● SmmLockBox.efi loaded just before

● SmmLockBox.efi base address can be

calculated

● delta = Pe.SizeofImage + Pe.fileAlignment +

[Lockbox allocated data]

SmmLockBox

Lockation (pun intended)

Annexes

75/76

Location (no pun this time)

● SMI published by SMM foundation

● Part of PiSmmCore.efi

● Location calculated the same way as for

SmmLockBox

● Just need to take into account CpuIo2Smm

ACPI Firmware Performance Data Table

Annexes

76/76

