
AIL Project
Open source framework to efficiently collect, crawl, dig, and analyze

unstructured data

Aurelien Thirion
aurelien.thirion@circl.lu

info@circl.lu

July 3, 2023



Links

• AIL project https://github.com/ail-project (all
components including feeders and crawler infrastructure)

• AIL framework
https://github.com/ail-project/ail-framework (analysis
framework)

• Training materials and slide deck
https://github.com/ail-project/ail-training

• Online chat https://gitter.im/ail-project/community
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Legal and Ethics
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Ethics in Information Security and Cybersecurity

• The materials and tools presented can open a significant numbers
of questions regarding ethics;

• Our researches and tools are there for education, supporting the
public good and improve incident response;

• We ask all users and participants to follow ethical principles and
act professionaly1.

1https://www.acm.org/code-of-ethics

https://www.first.org/global/sigs/ethics/ethics-first
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Collecting, processing and analysing content - web
pages

• Building a search engine on the web is a challenging task because:
◦ it has to crawl webpages,
◦ it has to to make sense of unstructured data,
◦ it has to index these data,
◦ it has to provide a way to retrieve data and structure data (e.g.

correlation).

• Doing so on Tor is even more challenging because:
◦ services don’t always want to be found,
◦ parts of the dataset have to be discarded.

• in each case, it requires a lot of bandwidth, storage and computing
power.
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Collecting, processing and analysing content -
structured data

• Some data are structured and are easy to process:
◦ metadata!
◦ API responses.

• Some even provide cryptographic evidences:
◦ authentication mechanisms between peers,
◦ OpenGPG can leak a lot of metadata

• key ids,
• subject of email in thunderbird,

◦ Bitcoin’s Blockchain is public,
◦ pivoting on these data with external sources yields interesting results.
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AIL Design Objectives
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Session Objectives

• Demonstrate the practical usage and extensibility of an open source
tool for monitoring web pages, pastes, forums, and hidden services

• Discuss the challenges involved and delve into the design principles
of the AIL open source framework

• Explore various collection mechanisms and sources utilized by
the AIL framework

• Gain knowledge on creating new modules within the AIL framework

• Acquire (quickly) proficiency in using, installing, and initializing AIL

• Understand the significance of integrating the AIL framework into
the cyber threat intelligence life cycle, with notable tools such as
MISP
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AIL Framework
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From a requirement to a solution: AIL Framework

History:

• AIL initially started as an internship project (2014) to
evaluate the feasibility to automate the analysis of
(un)structured information to find leaks.

• In 2019, AIL framework is an open source software in
Python. The software is actively used (and maintained) by
CIRCL and many organisations.

• In 2020, AIL framework became a complete project called ail
project2.

• In 2023, AIL framework version 5.0 released with a new
datastorage back-end.

2https://github.com/ail-project/
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Capabilities Overview
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Common usage

• Check if mail/password/other sensitive information (terms
tracked) leaked

• Detect reconnaissance of your infrastructure

• Search for leaks inside large leak archive

• Monitor and crawl websites
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Supporting CERT and Law Enforcement Activities

• Proactive Investigation: Detection of Leaks
◦ Compilation of leaked emails and passwords
◦ Analysis of leaked databases
◦ Identification of exposed SaaS keys (AWS, Google,...)
◦ Detection of compromised credit card information
◦ Identification and analysis of compromised PGP private keys and

certificate keys

• Contributing to Passive DNS and Metadata Collection Systems

• Sharing CVEs and Proof-of-Concepts (PoCs) for commonly
exploited vulnerabilities

• Deanonymization of Hidden Services
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Support CERT and Law Enforcement activities

• Website monitoring
◦ Monitor booters, marketplaces, forums
◦ Detect encoded exploits (WebShell, malware encoded in Base64,...)
◦ SQL injections

• Automatic and manual submission to threat intelligence sharing
and incident response platforms
◦ MISP
◦ TheHive

• Term/Regex/YARA monitoring for local companies/government
keywords
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Sources of leaks
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Catching mistakes from users
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Example - Sources of leaks - paste monitoring

• Example: https://gist.github.com/

◦ Easily storing and sharing text online
◦ Used by programmers and legitimate users
→ Source code & information about configurations

• Abused by attackers to store:
◦ List of vulnerable/compromised sites
◦ Software vulnerabilities (e.g. exploits)
◦ Database dumps
→ User data
→ Credentials
→ Credit card details

◦ More and more ...
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Examples of pastes (items)



Purposes of Leaks

• Economic Interests: Adversaries may promote services for their
own financial gain.

• Ransom Model: Leaks can be used to publicly pressure victims
into meeting certain demands.

• Political Motives: Adversaries may leak information to showcase
their power or influence.

• Collaboration: Criminals may need to collaborate and share
leaked information for their operations.

• Operational Infrastructure: Examples include malware that
exfiltrates information to pastie websites.

• Mistakes and Errors: Leaks can also occur due to unintentional
mistakes or errors.
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Objectives for SOC/CSIRT Teams

• Contacting Companies or Organizations: Reach out to
companies or organizations responsible for specific accidental leaks
to address the issue

• Engaging with Media: Collaborate with the media to discuss
specific leak cases and find practical ways to increase factual
information available to the public

• Evaluate the Cybercriminal Economy: Analyze the cybercriminal
market, including activities such as DDoS booters3 and the
reselling of personal information, in order to understand the
disparity between reality and media coverage

• Analyze the Collateral Effects: Investigate the broader impact of
malware, software vulnerabilities, or data exfiltration incidents

3https://github.com/D4-project/
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Current capabilities
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AIL Framework - Current capabilities

• Extending AIL to add a new analysis module can be done in 50
lines of Python

• The framework supports multi-processors/cores by default.
Any analysis module can be started multiple times to support
faster processing during peak times or bulk import

• Multiple concurrent data input

• Automatic Tor Crawler and website crawling (handle cookies
authentication) via Lacus4

4https://github.com/ail-project/lacus
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AIL Framework - features

• Extracting credit cards numbers, credentials, phone numbers,
...

• Extracting and validating potential hostnames

• Keeps track of duplicates

• Submission to threat sharing and incident response platform
(MISP and TheHive)

• Full-text indexer to index unstructured information

• Tagging for classification and searches

• Terms, sets, regex and YARA tracking and occurrences

• Archives, files and raw submission from the UI

• PGP, Cryptocurrencies, Decoded (Base64, ...) and username
Correlation

• And many more
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Trackers - Retro Hunt

• Search and monitor specific keywords/patterns
◦ Automatic Tagging
◦ Email Notifications

• Track Word
◦ ddos

• Track Set
◦ booter,ddos,stresser;2

• Track Regex
◦ circl\.lu

• Track Typo-squatting

• YARA rules
◦ https://github.com/ail-project/ail-yara-rules
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YARA Tracker
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Trackers - Practical part

• Create and test your own tracker

26 of 107



Retro Hunt
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Crawler

• Crawlers are used to navigate on regular website as well as .onion
addresses (via automatic extraction of urls or manual submission)

• Lacus5 (”scriptable” browser) is rending the pages (including
javascript) and produce screenshots (HAR archive too)

Lacus

playwright

...
Lacus

playwright

AIL-framework

5https://github.com/ail-project/lacus
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Auto Crawler

How a domain is crawled by default

1. Fetch the first url
2. Render the web page including javascript (done by playwright via

Lacus)
3. Extract all urls
4. Filter url: keep all url of this domain
5. crawl next url (max depth = 1)

29 of 107



Crawler: Cookiejar

Use your cookies to login and bypass captcha
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Crawler: Cookiejar
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Lacus: Web Capturing System

• Lacus6 is a web capturing system built on playwright.

• AIL utilizes Lacus for fetching and rendering domains.
◦ Lacus can be installed and used independently from AIL.
◦ Capture what you need by enqueuing requests.
◦ Initiate the capture process.
◦ Retrieve the capture results.

6https://github.com/ail-project/lacus
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Crawler Settings - Lacus
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Crawler: DDoS Booter
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Recon and intelligence gathering tools

• Attacker also share informations

• Recon tools detected: 94
◦ sqlmap
◦ dnscan
◦ whois
◦ msfconsole (metasploit)
◦ dnmap
◦ nmap
◦ ...
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Recon and intelligence gathering tools
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Decoder

• Search for encoded strings
◦ Base64
◦ Hexadecimal
◦ Binary

• Guess Mime-type

• Items/Domains Correlation
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Decoder:
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Decoder:
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AIL Objects
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Correlations and relationship
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Investigations
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Live demo!
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Example: Dashboard
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Example: Text search
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Example: Items Metadata (1)
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Example: Items Metadata (2)
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Example: Items Metadata (3)
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Example: Browsing content
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Example: Browsing content
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Example: Search by tags
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MISP
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MISP Taxonomies

• Tagging is a simple way to attach a classification to an event or
attribute.

• Classification must be globally used to be efficient.

• Provide a set of already defined classifications modeling estimative
language

• Taxonomies are implemented in a simple JSON format 7.

• Can be easily cherry-picked or extended

7https://github.com/MISP/misp-taxonomies
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Taxonomies useful in AIL

• infoleak: Information classified as being potential leak.

• estimative-language: Describe quality and credibility of
underlying sources, data, and methodologies.

• admiralty-scale: Rank the reliability of a source and the credibility
of an information

• fpf8: Evaluate the degree of identifiability of personal data and the
types of pseudonymous data, de-identified data and anonymous
data.

8Future of Privacy Forum
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Taxonomies useful in AIL

• tor: Describe Tor network infrastructure.

• dark-web: Criminal motivation on the dark web.

• copine-scale9: Categorise the severity of images of child sex abuse.

9Combating Paedophile Information Networks in Europe
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threat sharing and incident response platforms

−→

Goal: submission to threat sharing and incident response platforms.
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threat sharing and incident response platforms

−→

1. Use infoleak taxonomy10

2. Add your own tags

3. Export AIL objects to MISP core format

4. Download it or Create a MISP Event11

10https://www.misp-project.org/taxonomies.html
11https://www.misp-standard.org/rfc/misp-standard-core.txt
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MISP Export

58 of 107



MISP Export
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MISP Export
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Automatic MISP Export on tags
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API
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AIL exposes a ReST API which can be used to interact with the
back-end12.

1 curl https ://127.0.0.1:7000/ api/v1/get/item/default

2 --header "Authorization:

iHc1_ChZxj1aXmiFiF1mkxxQkzawwriEaZpPqyTQj "

3 -H "Content -Type: application/json"

4 --data @input.json -X POST

5

12https:

//github.com/ail-project/ail-framework/blob/master/doc/README.md
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Setting up the framework
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Setting up AIL-Framework from source

Setting up AIL-Framework from source

1 git clone

https://github.com/ail-project/ail-framework.git

2 cd AIL-framework

3 ./installing_deps.sh
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Starting the framework
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Running your own instance from source

Accessing the environment and starting AIL

1

2 # Launch the system and the web interface

3 cd bin/

4 ./LAUNCH -l

67 of 107



Updating AIL

Launch the updater:

1 cd bin/

2 # git pull and launch all updates:

3 ./LAUNCH -u

4

5

6 # PS:

7 # The Updater is launched by default each time

8 # you start the framework with

9 # ./LAUNCH -l
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Feeding the framework
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Feeding Data to AIL

There are different ways to feed data into AIL:

1. AIL Importers:
◦ Dir / Files
◦ ZMQ
◦ pystemon

2. AIL Feeders (discord, telegram, ActivityPub, ...)

3. Feed your own data using the API

4. Feed your own file/text using the UI (Submit section)
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Feeding Data to AIL - Technical Considerations

• It is important to consider the size of each file being fed into AIL:
◦ For optimal processing and efficiency, it is recommended to keep each

file around 3 MB in size
◦ This balance between processing capabilities and file size is crucial, as

certain modules perform various computations, such as regexp
matching, which has a default timeout of 30 seconds

◦ If you need to process a large file, it is advisable to split it into multiple
smaller files. The AIL leak feeder tool13 can assist you in this task.

13https://github.com/ail-project/ail-feeder-leak
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Via the UI (1)

72 of 107



Via the UI (2)
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API - Feeding AIL with your own data

api/v1/import/item

1 {

2 "type": "text",

3 "tags": [

4 "infoleak:analyst-detection=\"private-key\""

5 ],

6 "text": "text to import"

7 }
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Importers

• Importers are located in the /bin/importer directory

• They are used to import different types of data into AIL

• Adding new Importers is straightforward.

• Available Importers:
◦ AIL Feeders
◦ ZMQ
◦ pystemon
◦ Files
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File Importer

• importer/FileImporter.py

Import File

1 . ./AILENV/bin/activate

2 cd tools/

3 ./file_dir_importer.py -f MY_FILE_PATH

Import Dir

1 . ./AILENV/bin/activate

2 cd tools/

3 ./file_dir_importer.py -d MY_DIR_PATH
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AIL feeders Importers

• 12+ feeders are available for all AIL users to feed from external
sources

• External feeders can run anywhere and are completely separated
from AIL framework

• The feeder can use their own internal logic and even push JSON
metadata

• Feeder are then pushing the generated JSON to AIL API
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Certificate transparency feeder for AIL

• ail-feeder-cti14 is a generic software to extract information from a
certstream server (certificate transparency)

• All metadata extracted will be processed by AIL

• Onion addresses crawled automatically by AIL if seen in a
certificate

14https://github.com/ail-project/ail-feeder-ct

78 of 107

https://github.com/ail-project/ail-feeder-ct


GitHub archive and GitHub repository

• ail-feeder-gharchive15 is a generic software to extract informations
from GHArchive, collect and feed AIL via AIL ReST API

• ail-feeder-github-repo16 is collecting from a GitHub repository and
push everything to AIL

• For monitoring a set of suspicious git repositories or finding
leaks on existing or managed git repositories, it’s a simple way to
feed AIL with such source.

15https://github.com/ail-project/ail-feeder-gharchive
16https://github.com/ail-project/ail-feeder-github-repo
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AIL LeakFeeder

• ail-feeder-leak17 automates the process to feed leaked large files
automatically to AIL

17https://github.com/ail-project/ail-feeder-leak
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AIL feeder ActivityPub

• ail-feeder-activity-pub18 is feeder for the ActivityPub standard used
in distributed social networks (e.g. Mastodon)

• Accounts are required on the ActivityPub instance to get the
stream

18https://github.com/ail-project/ail-feeder-activity-pub
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AIL feeder telegram

• ail-feeder-telegram19 is a Telegram feeder

• An API ID/hash for Telegram is required and linked to your
Telegram phone number

19https://github.com/ail-project/ail-feeder-telegram
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More feeders

• ail-feeder-discord20 is a generic Discord feeder for AIL

• ail-feeder-atom-rss21 is an Atom and RSS reader and feeder for
AIL

• ail-feeder-jsonlogs22 is a JSON aggregator to submit generic
JSON input into AIL

20https://github.com/ail-project/ail-feeder-discord
21https://github.com/ail-project/ail-feeder-atom-rss
22https://github.com/ail-project/ail-feeder-jsonlogs

83 of 107

https://github.com/ail-project/ail-feeder-discord
https://github.com/ail-project/ail-feeder-atom-rss
https://github.com/ail-project/ail-feeder-jsonlogs


Feeding AIL with custom JSON
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Feeding AIL with Conti leaks

• Conti jabber leaks are a good candidate for AIL analysis:
◦ PGP keys
◦ Bitcoin addresses, maybe others,
◦ onion hidden services

• first we translated the files on english using deepl.com

• then we created a feeder to import json data in AIL

• Support added in AIL to correlate jabber usernames
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Feeding AIL with Conti leaks

1 from p y a i l import PyAIL
2 #. . . impo r t s
3 #. . . s e tup code
4 f o r con t en t i n s y s . s t d i n :
5 elm = j s on . l o a d s ( con t en t )
6 tmp = elm [ ’ body ’ ]
7 tmpmt = {}
8 tmpmt [ ’ j a b b e r : to ’ ] = elm [ ’ to ’ ]
9 tmpmt [ ’ j a b b e r : from ’ ] = elm [ ’ from ’ ]

10 tmpmt [ ’ j a b b e r : t s ’ ] = elm [ ’ t s ’ ]
11 tmpmt [ ’ j a b b e r : i d ’ ] = ”{}” . format ( uu id . uu id4 ( ) )
12 p y a i l . f e e d j s o n i t em ( tmp , tmpmt , a i l f e e d e r t y p e ,

s o u r c e u u i d )

feeder.py

1 $ cat ˜/ c o n t i /* | j q . −c | python . / f e e d e r . py
2
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Feeding AIL with Conti leaks

• use grep to limit the noise on an instance by only sending
interesting bits:
◦ PGP keys

1 $ cat ˜/ c o n t i /* | j q . −c | grep PGP | python . /
f e e d e r . py

◦ onion hidden services | grep http:// |
◦ telegram addresses | grep tg:// |
◦ bitcoins addresses | egrep

--regexp="[13][a-km-zA-HJ-NP-Z1-9]25,34" |
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AIL ecosystem - Challenges and design
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AIL ecosystem: Technologies used

Programming language: Full python3

Databases: Redis and Kvrocks

Server: Flask

Data message passing: Redis Set
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AIL global architecture: Data streaming between
module
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AIL global architecture: Data streaming between
module (Credential example)
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Message consuming

Modulex

Redis set

Moduley Moduley

SPOP SPOP

SADD

→ No message lost nor double processing

→ Multiprocessing!
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Creating new features
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Developing new features: Plug-in a module in the
system

Choose where to put your module in the data flow:

Then, modify configs/modules.cfg accordingly
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Writing your own modules -
/bin/modules/TemplateModule.py

1 from modules.abstract_module import AbstractModule

2

3 class NewModule(AbstractModule):

4

5 def __init__(self):

6 super().__init__ ()

7 self.logger.info(f’Module {self.module_name} initialized ’)

8

9 # Do something with the message from the queue

10 def compute(self , message):

11 # Process Message

12

13 # LAUNCH MODULE

14 if __name__ == ’__main__ ’:

15 module = NewModule ()

16 module.run()

17

18
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Writing your own Importer - /bin/importer/

1 from importer.abstract_importer import AbstractImporter

2 from modules.abstract_module import AbstractModule

3

4 class MyNewImporter(AbstractImporter):

5

6 def __init__(self):

7 super().__init__ ()

8 # super ().__init__(queue=True) # if it’s an one -time run importer

9 self.logger.info(f’Importer {self.name} initialized ’)

10

11 def importer(self , my_var): # import function

12 # Process my_var and get content to import

13 content = GET_MY_CONTENT_TO_IMPORT

14 # if content is not gzipped and/or not b64 encoded ,

15 # set gzipped and/or b64 to False

16 message = self.create_message(item_id , content)

17 return message

18 # if it’s an one -time run , otherwise create an AIL Module

19 # self.add_message_to_queue(message)

20

21 class MyNewModuleImporter(AbstractModule):

22 def __init__(self):

23 super().__init__ () # init module ...

24 # init module ...

25 self.importer = MyNewImporter ()

26

27
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Writing your own Importer - /bin/importer/

1

2 def get_message(self):

3 return self.importer.importer ()

4

5 def compute(self , message):

6 self.add_message_to_queue(message)

7

8 if __name__ == ’__main__ ’:

9 module = MyNewModuleImporter ()

10 module.run()

11

12 # if it’s an one -time run:

13 # importer = MyImporter ()

14 # importer.importer(my_var)

15

16
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Contribution rules
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How to contribute
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Glimpse of contributed features

• Docker

• Ansible

• Email alerting

• SQL injection detection

• Phone number detection
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How to contribute

• Feel free to fork the code, play with it, make some patches or add
additional analysis modules.

• Feel free to make a pull request for your contribution

• That’s it!
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Final words

• Building AIL helped us to find additional leaks which cannot be
found using manual analysis and improve the time to detect
duplicate/recycled leaks.

→ Therefore quicker response time to assist and/or inform
proactively affected constituents.
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Implementation Steps in AIL project

• Gradual changes in AIL to add required functionalities to support
the objectives.

• Time-memory trade-off can be challenging to ensure a functional
framework.

• Evaluation and integration of new modules in AIL based on
time-memory comparisons.

• Semantic aspects are challenging due to the diverse data sources,
unstructured data and languages seen.
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Ongoing developments

• MISP Importer

• Bloom filter filtering

• Data retention and lifetime management of objects

• MISP modules expansion

• Auto classification of content by set of terms (semantic analysis)

• Improved export stream to third parties software

• Improved indexing relying on Solr, Lucene or other components
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Contact

• CIRCL has developed a range of open-source tools for intelligence
analysts and incident responders.

• We welcome partnerships and collaboration discussions. Feel free
to contact us23.

23mailto:info@circl.lu
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Annexes
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Managing AIL: Old fashion way

Access the script screen

1 screen -r Script

Table: GNU screen shortcuts

Shortcut Action

C-a d detach screen

C-a c Create new window

C-a n next window screen

C-a p previous window screen
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