
AIL Project
Open source framework to efficiently collect, crawl, dig, and analyze

unstructured data

Aurelien Thirion
aurelien.thirion@circl.lu

info@circl.lu

July 3, 2023

Links

• AIL project https://github.com/ail-project (all
components including feeders and crawler infrastructure)

• AIL framework
https://github.com/ail-project/ail-framework (analysis
framework)

• Training materials and slide deck
https://github.com/ail-project/ail-training

• Online chat https://gitter.im/ail-project/community

2 of 107

https://github.com/ail-project
https://github.com/ail-project/ail-framework
https://github.com/ail-project/ail-training
https://gitter.im/ail-project/community

Legal and Ethics

3 of 107

Ethics in Information Security and Cybersecurity

• The materials and tools presented can open a significant numbers
of questions regarding ethics;

• Our researches and tools are there for education, supporting the
public good and improve incident response;

• We ask all users and participants to follow ethical principles and
act professionaly1.

1https://www.acm.org/code-of-ethics

https://www.first.org/global/sigs/ethics/ethics-first

4 of 107

https://www.acm.org/code-of-ethics
https://www.first.org/global/sigs/ethics/ethics-first

Collecting, processing and analysing content - web
pages

• Building a search engine on the web is a challenging task because:
◦ it has to crawl webpages,
◦ it has to to make sense of unstructured data,
◦ it has to index these data,
◦ it has to provide a way to retrieve data and structure data (e.g.

correlation).

• Doing so on Tor is even more challenging because:
◦ services don’t always want to be found,
◦ parts of the dataset have to be discarded.

• in each case, it requires a lot of bandwidth, storage and computing
power.

5 of 107

Collecting, processing and analysing content -
structured data

• Some data are structured and are easy to process:
◦ metadata!
◦ API responses.

• Some even provide cryptographic evidences:
◦ authentication mechanisms between peers,
◦ OpenGPG can leak a lot of metadata

• key ids,
• subject of email in thunderbird,

◦ Bitcoin’s Blockchain is public,
◦ pivoting on these data with external sources yields interesting results.

6 of 107

AIL Design Objectives

7 of 107

Session Objectives

• Demonstrate the practical usage and extensibility of an open source
tool for monitoring web pages, pastes, forums, and hidden services

• Discuss the challenges involved and delve into the design principles
of the AIL open source framework

• Explore various collection mechanisms and sources utilized by
the AIL framework

• Gain knowledge on creating new modules within the AIL framework

• Acquire (quickly) proficiency in using, installing, and initializing AIL

• Understand the significance of integrating the AIL framework into
the cyber threat intelligence life cycle, with notable tools such as
MISP

8 of 107

AIL Framework

9 of 107

From a requirement to a solution: AIL Framework

History:

• AIL initially started as an internship project (2014) to
evaluate the feasibility to automate the analysis of
(un)structured information to find leaks.

• In 2019, AIL framework is an open source software in
Python. The software is actively used (and maintained) by
CIRCL and many organisations.

• In 2020, AIL framework became a complete project called ail
project2.

• In 2023, AIL framework version 5.0 released with a new
datastorage back-end.

2https://github.com/ail-project/

10 of 107

https://github.com/ail-project/

Capabilities Overview

11 of 107

Common usage

• Check if mail/password/other sensitive information (terms
tracked) leaked

• Detect reconnaissance of your infrastructure

• Search for leaks inside large leak archive

• Monitor and crawl websites

12 of 107

Supporting CERT and Law Enforcement Activities

• Proactive Investigation: Detection of Leaks
◦ Compilation of leaked emails and passwords
◦ Analysis of leaked databases
◦ Identification of exposed SaaS keys (AWS, Google,...)
◦ Detection of compromised credit card information
◦ Identification and analysis of compromised PGP private keys and

certificate keys

• Contributing to Passive DNS and Metadata Collection Systems

• Sharing CVEs and Proof-of-Concepts (PoCs) for commonly
exploited vulnerabilities

• Deanonymization of Hidden Services

13 of 107

Support CERT and Law Enforcement activities

• Website monitoring
◦ Monitor booters, marketplaces, forums
◦ Detect encoded exploits (WebShell, malware encoded in Base64,...)
◦ SQL injections

• Automatic and manual submission to threat intelligence sharing
and incident response platforms
◦ MISP
◦ TheHive

• Term/Regex/YARA monitoring for local companies/government
keywords

14 of 107

Sources of leaks

15 of 107

Catching mistakes from users

16 of 107

Example - Sources of leaks - paste monitoring

• Example: https://gist.github.com/

◦ Easily storing and sharing text online
◦ Used by programmers and legitimate users
→ Source code & information about configurations

• Abused by attackers to store:
◦ List of vulnerable/compromised sites
◦ Software vulnerabilities (e.g. exploits)
◦ Database dumps
→ User data
→ Credentials
→ Credit card details

◦ More and more ...

17 of 107

https://gist.github.com/

Examples of pastes (items)

Purposes of Leaks

• Economic Interests: Adversaries may promote services for their
own financial gain.

• Ransom Model: Leaks can be used to publicly pressure victims
into meeting certain demands.

• Political Motives: Adversaries may leak information to showcase
their power or influence.

• Collaboration: Criminals may need to collaborate and share
leaked information for their operations.

• Operational Infrastructure: Examples include malware that
exfiltrates information to pastie websites.

• Mistakes and Errors: Leaks can also occur due to unintentional
mistakes or errors.

19 of 107

Objectives for SOC/CSIRT Teams

• Contacting Companies or Organizations: Reach out to
companies or organizations responsible for specific accidental leaks
to address the issue

• Engaging with Media: Collaborate with the media to discuss
specific leak cases and find practical ways to increase factual
information available to the public

• Evaluate the Cybercriminal Economy: Analyze the cybercriminal
market, including activities such as DDoS booters3 and the
reselling of personal information, in order to understand the
disparity between reality and media coverage

• Analyze the Collateral Effects: Investigate the broader impact of
malware, software vulnerabilities, or data exfiltration incidents

3https://github.com/D4-project/

20 of 107

https://github.com/D4-project/

Current capabilities

21 of 107

AIL Framework - Current capabilities

• Extending AIL to add a new analysis module can be done in 50
lines of Python

• The framework supports multi-processors/cores by default.
Any analysis module can be started multiple times to support
faster processing during peak times or bulk import

• Multiple concurrent data input

• Automatic Tor Crawler and website crawling (handle cookies
authentication) via Lacus4

4https://github.com/ail-project/lacus

22 of 107

https://github.com/ail-project/lacus

AIL Framework - features

• Extracting credit cards numbers, credentials, phone numbers,
...

• Extracting and validating potential hostnames

• Keeps track of duplicates

• Submission to threat sharing and incident response platform
(MISP and TheHive)

• Full-text indexer to index unstructured information

• Tagging for classification and searches

• Terms, sets, regex and YARA tracking and occurrences

• Archives, files and raw submission from the UI

• PGP, Cryptocurrencies, Decoded (Base64, ...) and username
Correlation

• And many more

23 of 107

Trackers - Retro Hunt

• Search and monitor specific keywords/patterns
◦ Automatic Tagging
◦ Email Notifications

• Track Word
◦ ddos

• Track Set
◦ booter,ddos,stresser;2

• Track Regex
◦ circl\.lu

• Track Typo-squatting

• YARA rules
◦ https://github.com/ail-project/ail-yara-rules

24 of 107

YARA Tracker

25 of 107

Trackers - Practical part

• Create and test your own tracker

26 of 107

Retro Hunt

27 of 107

Crawler

• Crawlers are used to navigate on regular website as well as .onion
addresses (via automatic extraction of urls or manual submission)

• Lacus5 (”scriptable” browser) is rending the pages (including
javascript) and produce screenshots (HAR archive too)

Lacus

playwright

...
Lacus

playwright

AIL-framework

5https://github.com/ail-project/lacus

28 of 107

https://github.com/ail-project/lacus

Auto Crawler

How a domain is crawled by default

1. Fetch the first url
2. Render the web page including javascript (done by playwright via

Lacus)
3. Extract all urls
4. Filter url: keep all url of this domain
5. crawl next url (max depth = 1)

29 of 107

Crawler: Cookiejar

Use your cookies to login and bypass captcha

30 of 107

Crawler: Cookiejar

31 of 107

Lacus: Web Capturing System

• Lacus6 is a web capturing system built on playwright.

• AIL utilizes Lacus for fetching and rendering domains.
◦ Lacus can be installed and used independently from AIL.
◦ Capture what you need by enqueuing requests.
◦ Initiate the capture process.
◦ Retrieve the capture results.

6https://github.com/ail-project/lacus

32 of 107

https://github.com/ail-project/lacus

Crawler Settings - Lacus

33 of 107

Crawler: DDoS Booter

34 of 107

Recon and intelligence gathering tools

• Attacker also share informations

• Recon tools detected: 94
◦ sqlmap
◦ dnscan
◦ whois
◦ msfconsole (metasploit)
◦ dnmap
◦ nmap
◦ ...

35 of 107

Recon and intelligence gathering tools

36 of 107

Decoder

• Search for encoded strings
◦ Base64
◦ Hexadecimal
◦ Binary

• Guess Mime-type

• Items/Domains Correlation

37 of 107

Decoder:

38 of 107

Decoder:

39 of 107

AIL Objects

40 of 107

Correlations and relationship

41 of 107

Investigations

42 of 107

Live demo!

43 of 107

Example: Dashboard

44 of 107

Example: Text search

45 of 107

Example: Items Metadata (1)

46 of 107

Example: Items Metadata (2)

47 of 107

Example: Items Metadata (3)

48 of 107

Example: Browsing content

49 of 107

Example: Browsing content

50 of 107

Example: Search by tags

51 of 107

MISP

52 of 107

MISP Taxonomies

• Tagging is a simple way to attach a classification to an event or
attribute.

• Classification must be globally used to be efficient.

• Provide a set of already defined classifications modeling estimative
language

• Taxonomies are implemented in a simple JSON format 7.

• Can be easily cherry-picked or extended

7https://github.com/MISP/misp-taxonomies

53 of 107

https://github.com/MISP/misp-taxonomies

Taxonomies useful in AIL

• infoleak: Information classified as being potential leak.

• estimative-language: Describe quality and credibility of
underlying sources, data, and methodologies.

• admiralty-scale: Rank the reliability of a source and the credibility
of an information

• fpf8: Evaluate the degree of identifiability of personal data and the
types of pseudonymous data, de-identified data and anonymous
data.

8Future of Privacy Forum
54 of 107

Taxonomies useful in AIL

• tor: Describe Tor network infrastructure.

• dark-web: Criminal motivation on the dark web.

• copine-scale9: Categorise the severity of images of child sex abuse.

9Combating Paedophile Information Networks in Europe
55 of 107

threat sharing and incident response platforms

−→

Goal: submission to threat sharing and incident response platforms.

56 of 107

threat sharing and incident response platforms

−→

1. Use infoleak taxonomy10

2. Add your own tags

3. Export AIL objects to MISP core format

4. Download it or Create a MISP Event11

10https://www.misp-project.org/taxonomies.html
11https://www.misp-standard.org/rfc/misp-standard-core.txt

57 of 107

https://www.misp-project.org/taxonomies.html
https://www.misp-standard.org/rfc/misp-standard-core.txt

MISP Export

58 of 107

MISP Export

59 of 107

MISP Export

60 of 107

Automatic MISP Export on tags

61 of 107

API

62 of 107

AIL exposes a ReST API which can be used to interact with the
back-end12.

1 curl https ://127.0.0.1:7000/ api/v1/get/item/default

2 --header "Authorization:

iHc1_ChZxj1aXmiFiF1mkxxQkzawwriEaZpPqyTQj "

3 -H "Content -Type: application/json"

4 --data @input.json -X POST

5

12https:

//github.com/ail-project/ail-framework/blob/master/doc/README.md

63 of 107

https://github.com/ail-project/ail-framework/blob/master/doc/README.md
https://github.com/ail-project/ail-framework/blob/master/doc/README.md

Setting up the framework

64 of 107

Setting up AIL-Framework from source

Setting up AIL-Framework from source

1 git clone

https://github.com/ail-project/ail-framework.git

2 cd AIL-framework

3 ./installing_deps.sh

65 of 107

Starting the framework

66 of 107

Running your own instance from source

Accessing the environment and starting AIL

1

2 # Launch the system and the web interface

3 cd bin/

4 ./LAUNCH -l

67 of 107

Updating AIL

Launch the updater:

1 cd bin/

2 # git pull and launch all updates:

3 ./LAUNCH -u

4

5

6 # PS:

7 # The Updater is launched by default each time

8 # you start the framework with

9 # ./LAUNCH -l

68 of 107

Feeding the framework

69 of 107

Feeding Data to AIL

There are different ways to feed data into AIL:

1. AIL Importers:
◦ Dir / Files
◦ ZMQ
◦ pystemon

2. AIL Feeders (discord, telegram, ActivityPub, ...)

3. Feed your own data using the API

4. Feed your own file/text using the UI (Submit section)

70 of 107

Feeding Data to AIL - Technical Considerations

• It is important to consider the size of each file being fed into AIL:
◦ For optimal processing and efficiency, it is recommended to keep each

file around 3 MB in size
◦ This balance between processing capabilities and file size is crucial, as

certain modules perform various computations, such as regexp
matching, which has a default timeout of 30 seconds

◦ If you need to process a large file, it is advisable to split it into multiple
smaller files. The AIL leak feeder tool13 can assist you in this task.

13https://github.com/ail-project/ail-feeder-leak

71 of 107

https://github.com/ail-project/ail-feeder-leak

Via the UI (1)

72 of 107

Via the UI (2)

73 of 107

API - Feeding AIL with your own data

api/v1/import/item

1 {

2 "type": "text",

3 "tags": [

4 "infoleak:analyst-detection=\"private-key\""

5],

6 "text": "text to import"

7 }

74 of 107

Importers

• Importers are located in the /bin/importer directory

• They are used to import different types of data into AIL

• Adding new Importers is straightforward.

• Available Importers:
◦ AIL Feeders
◦ ZMQ
◦ pystemon
◦ Files

75 of 107

File Importer

• importer/FileImporter.py

Import File

1 . ./AILENV/bin/activate

2 cd tools/

3 ./file_dir_importer.py -f MY_FILE_PATH

Import Dir

1 . ./AILENV/bin/activate

2 cd tools/

3 ./file_dir_importer.py -d MY_DIR_PATH

76 of 107

AIL feeders Importers

• 12+ feeders are available for all AIL users to feed from external
sources

• External feeders can run anywhere and are completely separated
from AIL framework

• The feeder can use their own internal logic and even push JSON
metadata

• Feeder are then pushing the generated JSON to AIL API

77 of 107

Certificate transparency feeder for AIL

• ail-feeder-cti14 is a generic software to extract information from a
certstream server (certificate transparency)

• All metadata extracted will be processed by AIL

• Onion addresses crawled automatically by AIL if seen in a
certificate

14https://github.com/ail-project/ail-feeder-ct

78 of 107

https://github.com/ail-project/ail-feeder-ct

GitHub archive and GitHub repository

• ail-feeder-gharchive15 is a generic software to extract informations
from GHArchive, collect and feed AIL via AIL ReST API

• ail-feeder-github-repo16 is collecting from a GitHub repository and
push everything to AIL

• For monitoring a set of suspicious git repositories or finding
leaks on existing or managed git repositories, it’s a simple way to
feed AIL with such source.

15https://github.com/ail-project/ail-feeder-gharchive
16https://github.com/ail-project/ail-feeder-github-repo

79 of 107

https://github.com/ail-project/ail-feeder-gharchive
https://github.com/ail-project/ail-feeder-github-repo

AIL LeakFeeder

• ail-feeder-leak17 automates the process to feed leaked large files
automatically to AIL

17https://github.com/ail-project/ail-feeder-leak

80 of 107

https://github.com/ail-project/ail-feeder-leak

AIL feeder ActivityPub

• ail-feeder-activity-pub18 is feeder for the ActivityPub standard used
in distributed social networks (e.g. Mastodon)

• Accounts are required on the ActivityPub instance to get the
stream

18https://github.com/ail-project/ail-feeder-activity-pub

81 of 107

https://github.com/ail-project/ail-feeder-activity-pub

AIL feeder telegram

• ail-feeder-telegram19 is a Telegram feeder

• An API ID/hash for Telegram is required and linked to your
Telegram phone number

19https://github.com/ail-project/ail-feeder-telegram

82 of 107

https://github.com/ail-project/ail-feeder-telegram

More feeders

• ail-feeder-discord20 is a generic Discord feeder for AIL

• ail-feeder-atom-rss21 is an Atom and RSS reader and feeder for
AIL

• ail-feeder-jsonlogs22 is a JSON aggregator to submit generic
JSON input into AIL

20https://github.com/ail-project/ail-feeder-discord
21https://github.com/ail-project/ail-feeder-atom-rss
22https://github.com/ail-project/ail-feeder-jsonlogs

83 of 107

https://github.com/ail-project/ail-feeder-discord
https://github.com/ail-project/ail-feeder-atom-rss
https://github.com/ail-project/ail-feeder-jsonlogs

Feeding AIL with custom JSON

84 of 107

Feeding AIL with Conti leaks

• Conti jabber leaks are a good candidate for AIL analysis:
◦ PGP keys
◦ Bitcoin addresses, maybe others,
◦ onion hidden services

• first we translated the files on english using deepl.com

• then we created a feeder to import json data in AIL

• Support added in AIL to correlate jabber usernames

85 of 107

Feeding AIL with Conti leaks

1 from p y a i l import PyAIL
2 #. . . impo r t s
3 #. . . s e tup code
4 f o r con t en t i n s y s . s t d i n :
5 elm = j s on . l o a d s (con t en t)
6 tmp = elm [’ body ’]
7 tmpmt = {}
8 tmpmt [’ j a b b e r : to ’] = elm [’ to ’]
9 tmpmt [’ j a b b e r : from ’] = elm [’ from ’]

10 tmpmt [’ j a b b e r : t s ’] = elm [’ t s ’]
11 tmpmt [’ j a b b e r : i d ’] = ”{}” . format (uu id . uu id4 ())
12 p y a i l . f e e d j s o n i t em (tmp , tmpmt , a i l f e e d e r t y p e ,

s o u r c e u u i d)

feeder.py

1 $ cat ˜/ c o n t i /* | j q . −c | python . / f e e d e r . py
2

86 of 107

Feeding AIL with Conti leaks

• use grep to limit the noise on an instance by only sending
interesting bits:
◦ PGP keys

1 $ cat ˜/ c o n t i /* | j q . −c | grep PGP | python . /
f e e d e r . py

◦ onion hidden services | grep http:// |
◦ telegram addresses | grep tg:// |
◦ bitcoins addresses | egrep

--regexp="[13][a-km-zA-HJ-NP-Z1-9]25,34" |

87 of 107

AIL ecosystem - Challenges and design

88 of 107

AIL ecosystem: Technologies used

Programming language: Full python3

Databases: Redis and Kvrocks

Server: Flask

Data message passing: Redis Set

89 of 107

AIL global architecture: Data streaming between
module

90 of 107

AIL global architecture: Data streaming between
module (Credential example)

91 of 107

Message consuming

Modulex

Redis set

Moduley Moduley

SPOP SPOP

SADD

→ No message lost nor double processing

→ Multiprocessing!

92 of 107

Creating new features

93 of 107

Developing new features: Plug-in a module in the
system

Choose where to put your module in the data flow:

Then, modify configs/modules.cfg accordingly
94 of 107

Writing your own modules -
/bin/modules/TemplateModule.py

1 from modules.abstract_module import AbstractModule

2

3 class NewModule(AbstractModule):

4

5 def __init__(self):

6 super().__init__ ()

7 self.logger.info(f’Module {self.module_name} initialized ’)

8

9 # Do something with the message from the queue

10 def compute(self , message):

11 # Process Message

12

13 # LAUNCH MODULE

14 if __name__ == ’__main__ ’:

15 module = NewModule ()

16 module.run()

17

18

95 of 107

Writing your own Importer - /bin/importer/

1 from importer.abstract_importer import AbstractImporter

2 from modules.abstract_module import AbstractModule

3

4 class MyNewImporter(AbstractImporter):

5

6 def __init__(self):

7 super().__init__ ()

8 # super ().__init__(queue=True) # if it’s an one -time run importer

9 self.logger.info(f’Importer {self.name} initialized ’)

10

11 def importer(self , my_var): # import function

12 # Process my_var and get content to import

13 content = GET_MY_CONTENT_TO_IMPORT

14 # if content is not gzipped and/or not b64 encoded ,

15 # set gzipped and/or b64 to False

16 message = self.create_message(item_id , content)

17 return message

18 # if it’s an one -time run , otherwise create an AIL Module

19 # self.add_message_to_queue(message)

20

21 class MyNewModuleImporter(AbstractModule):

22 def __init__(self):

23 super().__init__ () # init module ...

24 # init module ...

25 self.importer = MyNewImporter ()

26

27
96 of 107

Writing your own Importer - /bin/importer/

1

2 def get_message(self):

3 return self.importer.importer ()

4

5 def compute(self , message):

6 self.add_message_to_queue(message)

7

8 if __name__ == ’__main__ ’:

9 module = MyNewModuleImporter ()

10 module.run()

11

12 # if it’s an one -time run:

13 # importer = MyImporter ()

14 # importer.importer(my_var)

15

16

97 of 107

Contribution rules

98 of 107

How to contribute

99 of 107

Glimpse of contributed features

• Docker

• Ansible

• Email alerting

• SQL injection detection

• Phone number detection

100 of 107

How to contribute

• Feel free to fork the code, play with it, make some patches or add
additional analysis modules.

• Feel free to make a pull request for your contribution

• That’s it!

101 of 107

Final words

• Building AIL helped us to find additional leaks which cannot be
found using manual analysis and improve the time to detect
duplicate/recycled leaks.

→ Therefore quicker response time to assist and/or inform
proactively affected constituents.

102 of 107

Implementation Steps in AIL project

• Gradual changes in AIL to add required functionalities to support
the objectives.

• Time-memory trade-off can be challenging to ensure a functional
framework.

• Evaluation and integration of new modules in AIL based on
time-memory comparisons.

• Semantic aspects are challenging due to the diverse data sources,
unstructured data and languages seen.

103 of 107

Ongoing developments

• MISP Importer

• Bloom filter filtering

• Data retention and lifetime management of objects

• MISP modules expansion

• Auto classification of content by set of terms (semantic analysis)

• Improved export stream to third parties software

• Improved indexing relying on Solr, Lucene or other components

104 of 107

Contact

• CIRCL has developed a range of open-source tools for intelligence
analysts and incident responders.

• We welcome partnerships and collaboration discussions. Feel free
to contact us23.

23mailto:info@circl.lu

105 of 107

mailto:info@circl.lu

Annexes

106 of 107

Managing AIL: Old fashion way

Access the script screen

1 screen -r Script

Table: GNU screen shortcuts

Shortcut Action

C-a d detach screen

C-a c Create new window

C-a n next window screen

C-a p previous window screen

107 of 107

	Legal and Ethics
	AIL Design Objectives
	AIL Framework
	Capabilities Overview
	Sources of leaks
	Current capabilities
	Live demo!
	MISP
	API
	Setting up the framework
	Starting the framework
	Feeding the framework
	UI
	API
	Importers

	AIL ecosystem - Challenges and design
	Creating new features
	Contribution rules
	Annexes
	Managing the framework

