Introduction to Sigstore:
Cryptographic signatures made easier

Maya Costantini Pass the SALT 2023
Software Engineer, Red Hat

Maya Costantini

Software Engineer,

Red Hat Emerging Technologies
Security team

About me

@MayaCostantini

M) hachyderm.io/@mayacostantini

O @mayaCostantini

Supply chain security: why are signatures important?

e Software Supply Chain: the end-to-end journey software takes from
development to distribution, involving the tools and people responsible
for its delivery

e Developers, version control, build systems, registries, deployment
platforms...

e Attackers play on developer expectations of systematic reproducibility
to find vulnerable links in a Software Supply Chain

e Cryptographic signatures guarantee:

o Software integrity
o Software authenticity

Signing software before Sigstore
Challenges of using OpenPGP/GPG for software signing

e Public key distribution: ensure recipients have access to
the correct public keys to verify the authenticity of
software

e Private key storage and rotation:

o Safeguarding private keys is costly and leaks happen
anyway

o Need to regularly rotate signing keys to protect from
key compromise

e Intricate command line options

e Occasional need for cryptography knowledge

See: PGP signatures on PyPI: worse than useless on blog.yossarian.net

A key signing party in front of
FOSDEM 2008, Wikipedia

https://blog.yossarian.net/2023/05/21/PGP-signatures-on-PyPI-worse-than-useless
https://en.wikipedia.org/wiki/Key_signing_party

"Become to digital signatures

what Let’s Encrypt is to
HTTPS"

Let’s KB
Encrypt

A free and automated Certificate
Authority

Allows any domain owner to
obtain a trusted certificate at zero
cost

Over 256M active certificates
delivered since 2016 (~3M a day)

sigstore

A free service for signing
digital artifacts

Signatures are logged publicly
for verification

Over 25M entries stored since
2021

Project Timeline

V ad

&/
Sigstore starts Sigstore joins the
‘ at Red Hat Linux e ﬁ
\ Toundation ‘

2020 2021 2022 2023
Project launch GA for Rekor and
with 3 major Fulcio public
components: instances

Rekor, Fulcio and
Cosign

What is Sigstore?

Sigstore solves common issues with current signature schemes that prevent
developer adoption:

No knowledge of cryptography or PKI protocols required.
A simple interface to make signing accessible to everyone
No more private keys management and rotation

Easier auditing and revocation in case of compromise

Signatures are bound to a public identity instead of a public key

What is Sigstore?

sigstore sigstore
L 4
rekor fulcio
Signature transparency log Free Certificate Authority

sigstore 7+ ecosystem-specific
(] :
| C o s | g n clients (Python,
JavaScript,

CLI to sign and verify artifacts

Q & \ A3 ~ LBF:E(SE[F)G é uanSSF
siestore SIgstore /
e

fulcio gitsign

OpenSSF Project Sigstore is a new standard for
signing, verifying, and protecting
software. It is an OpenSSF project
and this landscape is intended as a
map to explore the Sigstore
ecosystem.

Architecture/Spec
Deployments

07 g =GO Maven JS

in-toto g KuBEWARDEN Kyverno

@ python

(2
=
k=)
=
©
o
=)
5]
2
=

Language Clients

IR Aisto - G <=

s, S X
cilium python Knative kubernetes AUTODESK

\’,‘.\/\ -
600 Ockam ur!§|b3

KUBEWARDEN Kyverno TEKTON

Signed With
Case Studies

Demo:
Signing and verifying a file
with the Cosign CLI

How does it work?

Sigstore’s “keyless” signing workflow

Signing an artifact

Generate
ephemeral key pair

identity proof
request

ID token

(dWT)

l Signing Client

Verification
materials

Signed Certificate

Verifier

Fr
|

Request + ID token

Signed Certificate

Log entry

I

Request
inclusion proof

Identity provider
(Google, Microsoft,
GitHub...)

Fulcio (Certificate
Authority)

Certificate

Rekor
(Transparency
Log)

Certificate
Transparency
Log

How does it work?

Sigstore’s “keyless” signing workflow

Signing an artifact

Generate
ephemeral key pair
ID token
(WT)

identity proof

request

|dentity provider
(Google, Microsoft,
GitHub...)

b Signing Client

Signed

Verification
materials

Ff
|

Signed Certificate
Request + ID token

Fulcio (Certificate

Certificate

Certificate Authority)
Log entry
Rekor
(Transparency
Log)

‘.‘ [
Verifier '——-—/—__-)

Request
inclusion proof

Certificate
Transparency
Log

How does it work?

Sigstore’s “keyless” signing workflow

Signing an artifact

Generate
ephemeral key pair
ID token
(WT)

identity proof

request

ldentity provider
(Google, Microsoft,
GitHub...)

I Signing Client

Signed

Verification
materials

Ff
|

Signed Certificate
Request + ID token

Fulcio (Certificate

Certificate

Certificate Authority)
Log entry
Rekor
(Transparency
Log)

\‘\ |
Verifier '——-—/—__-)

Request
inclusion proof

Certificate
Transparency
Log

How does it work?

Sigstore’s “keyless” signing workflow

Signing an artifact

Generate
ephemeral key pair
ID token
@wWT)

identity proof

request

|dentity provider
(Google, Microsoft,
GitHub...)

| Signing Client

Verification
materials

Ff
|

Signed Certificate
Request + ID token

Signed Certificate

Fulcio (Certificate
Authority)

Certificate

Log entry

‘.‘ [
Verifier '——-—/—__-)

Rekor
(Transparency
Log)

Request
inclusion proof

Certificate
Transparency
Log

How does it work?

Sigstore’s “keyless” signing workflow

Signing an artifact

Generate
ephemeral key pair
ID token
(WT)

identity proof

request

|dentity provider
(Google, Microsoft,
GitHub...)

| Signing Client

Signed

Verification
materials

Ff
|

Signed Certificate
Request + ID token

Fulcio (Certificate

Certificate

Certificate Authority)
Log entry
Rekor
(Transparency
Log)

‘.‘ |
Verifier '——-—/—__-)

Request
inclusion proof

Certificate
Transparency
Log

How does it work?

Sigstore’s “keyless” signing workflow

Signing an artifact

Generate
ephemeral key pair

ID token
(AWT)

' Signing Client

Signed

Verification
materials

Verifier

| |

Signed Certificate
Request + ID token

identity proof
request

Certificate

Log entry

I

Request
inclusion proof

ldentity provider
(Google, Microsoft,
GitHub...)

Known

identity

providers

Certificate -
Fulcio (Certificate q Téﬁ?{f;criﬂiy
Authority) Log
Rekor
(Transparency

Log)

How does it work?

Sigstore’s “keyless” signing workflow

Signing an artifact

Generate
ephemeral key pair

identity proof
request

ID token

(dWT)

l Signing Client

Verification
materials

Signed Certificate

Verifier

Fr
|

Request + ID token

Signed Certificate

Log entry

.

Request
inclusion proof

|dentity provider
(Google, Microsoft,
GitHub...)

Fulcio (Certificate
Authority)

Certificate

Rekor
(Transparency
Log)

Certificate
Transparency
Log

How does it work?

Sigstore’s “keyless” signing workflow

Signing an artifact

Generate
ephemeral key pair
ID token
(WT)

identity proof

request

|dentity provider
(Google, Microsoft,
GitHub...)

| Signing Client

Signed

Verification
materials

Ff
|

Signed Certificate
Request + ID token

Fulcio (Certificate

Certificate

Certificate Authority)
Log entry
Rekor
(Transparency
Log)

‘.‘ [
Verifier '——-—/—__-)

Request
inclusion proof

Certificate
Transparency
Log

How does it work?

Sigstore’s “keyless” signing workflow

Signing an artifact

Generate
ephemeral key pair
ID token
(WT)

identity proof
request

I Signing Client

Signed

Verification
materials

Ff
|

Signed Certificate
Request + ID token

Certificate

‘.‘ [
Verifier 'f

Request
inclusion proof

Identity provider
(Google, Microsoft,
GitHub...)

Fulcio (Certificate
Authority)

Certificate

Rekor
(Transparency
Log)

Certificate
Transparency
Log

How does it work?

Sigstore’s “keyless” signing workflow

Verifying a Sigstore
signature

Generate
ephemeral key pair

ID token
(AWT)

| Signing Client

Signed

Verification
materials

\ |

Signed Certificate
Request + ID token

identity proof
request

Certificate

Log entry

If |
Verifier 'j

Request
inclusion proof

ldentity provider
(Google, Microsoft,
GitHub...)

Fulcio (Certificate
Authority)

Certificate

Rekor
(Transparency
Log)

Certificate
Transparency
Log

How does it work?
Merkle Tree

Behind Sigstore’s Transparency Logs
Top Hash

hash(Hash 0)

Hash 1

- Immutable
- Append-only
Hash Hash
0 1
hash(ooy) hash(s)
Hash Hash Hash Hash
0-0 0-1 1-0 1-1
hash(L1) hash(L2) hash(L3) hash(L4)
. : Data
L1 L2 L3 L4 BEEES

Join the community and get involved

@ sigstore.dev/community

Q
c.... https://links.sigstore.dev/slack-invite

u https://www.youtube.com/@projectsigstore

@ sigstogg https://blog.sigstore.dev/

https://www.sigstore.dev/community
https://links.sigstore.dev/slack-invite

Thank you!

Q& A

