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Supply chain security: why are signatures important?

e Software Supply Chain: the end-to-end journey software takes from
development to distribution, involving the tools and people responsible
for its delivery

e Developers, version control, build systems, registries, deployment
platforms...

e Attackers play on developer expectations of systematic reproducibility
to find vulnerable links in a Software Supply Chain

e Cryptographic signatures guarantee:

o Software integrity
o Software authenticity




Signing software before Sigstore
Challenges of using OpenPGP/GPG for software signing

e Public key distribution: ensure recipients have access to
the correct public keys to verify the authenticity of
software

e Private key storage and rotation:

o Safeguarding private keys is costly and leaks happen
anyway

o Need to regularly rotate signing keys to protect from
key compromise

e Intricate command line options

e Occasional need for cryptography knowledge

See: PGP signatures on PyPI: worse than useless on blog.yossarian.net

A key signing party in front of
FOSDEM 2008, Wikipedia


https://blog.yossarian.net/2023/05/21/PGP-signatures-on-PyPI-worse-than-useless
https://en.wikipedia.org/wiki/Key_signing_party

"Become to digital signatures

what Let’s Encrypt is to
HTTPS"



Let’s KB
Encrypt

A free and automated Certificate
Authority

Allows any domain owner to
obtain a trusted certificate at zero
cost

Over 256M active certificates
delivered since 2016 (~3M a day)

sigstore

A free service for signing
digital artifacts

Signatures are logged publicly
for verification

Over 25M entries stored since
2021
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What is Sigstore?

Sigstore solves common issues with current signature schemes that prevent
developer adoption:

No knowledge of cryptography or PKI protocols required.
A simple interface to make signing accessible to everyone
No more private keys management and rotation

Easier auditing and revocation in case of compromise

Signatures are bound to a public identity instead of a public key



What is Sigstore?
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OpenSSF Project Sigstore is a new standard for
signing, verifying, and protecting
software. It is an OpenSSF project
and this landscape is intended as a
map to explore the Sigstore
ecosystem.
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Demo:
Signing and verifying a file
with the Cosign CLI



How does it work?

Sigstore’s “keyless” signing workflow
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How does it work?

Sigstore’s “keyless” signing workflow
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How does it work?
Merkle Tree

Behind Sigstore’s Transparency Logs
Top Hash
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Join the community and get involved

@ sigstore.dev/community

Q
c.... https://links.sigstore.dev/slack-invite

u https://www.youtube.com/@projectsigstore

@ sigstogg https://blog.sigstore.dev/



https://www.sigstore.dev/community
https://links.sigstore.dev/slack-invite

Thank you!

Q& A



