
Passbolt: a bold use of';--have i been pwned?
Qui bene amat bene castigat

Philippe Teuwen

Who am I? A user of Passbolt

Open Source Password Manager with sharing features for teams

Uses Pwned Passwords, part of ';--have i been pwned?

About 1 500 000 000 leaked passwords,
maintained by Troy Hunt, cached by CloudFlare

“[...] it never gains enough information about a non-breached password hash
to be able to breach it later.”

Sounds good, right?

Pwned Password API

$ echo -n p@ssword | sha1sum
36e618512a68721f032470bb0891adef3362cfa9
___/_________________________________/

⇒ send 36e61

$ wget -q -O - https://api.pwnedpasswords.com/range/36e61
[...]
8512A68721F032470BB0891ADEF3362CFA9:21804
[...]

If no hit, we’re fine
Nothing to learn from 2.5 bytes leak, right?

Passbolt UX

Wait, is it querying the API even for 1 char??

Passbolt UX

Wait, is it querying the API even for 1 char??

Sniffing API usage

Typing password “123456789AB” ⇒
▶ 1 to 7 → nothing

▶ 8 → API query with 7C222 (SHA1[0:5] of 12345678)
▶ 9 → API query with F7C3B (SHA1[0:5] of 123456789)
▶ A → API query with BE472 (SHA1[0:5] of 123456789A)
▶ B → API query with 4A3C4 (SHA1[0:5] of 123456789AB)

300 ms debounce ⇒ If typing at 3 chars/s max, we get all queries

8-char from 92-char alphabet: ∼ 52 bits
Learned 20 bits of leak, remain 5 billion possibilities…

Sniffing API usage

Typing password “123456789AB” ⇒
▶ 1 to 7 → nothing

▶ 8 → API query with 7C222 (SHA1[0:5] of 12345678)
▶ 9 → API query with F7C3B (SHA1[0:5] of 123456789)
▶ A → API query with BE472 (SHA1[0:5] of 123456789A)
▶ B → API query with 4A3C4 (SHA1[0:5] of 123456789AB)

300 ms debounce ⇒ If typing at 3 chars/s max, we get all queries

8-char from 92-char alphabet: ∼ 52 bits
Learned 20 bits of leak, remain 5 billion possibilities…

Maths...

▶ After 8 chars,
H = log2(92

8) = 52.2 bits, but L = log2(16
5) = 20 bits ⇒ H = 32.2 bits

▶ After 9 chars,
H = log2(92

9) = 58.7 bits, but L = 2 log2(16
5) = 40 bits ⇒ H = 18.7 bits

▶ After 10 chars,
H = log2(92

10) = 65.2 bits, but L = 3 log2(16
5) = 60 bits ⇒ H = 5.2 bits

▶ After 11 chars,
H = log2(92

11) = 71.8 bits, but L = 4 log2(16
5) = 80 bits ⇒ H = 0

⇒The password can be fully recovered!

Strategy...

▶ Generate the 5 million of billion of 8-char candidates
▶ 1st hash → 1 / 1 000 000
▶ Extend to 9 chars
▶ 2nd hash → 1 / 1 000 000
▶ Extend to 10 chars
▶ 3rd hash → 1 / 1 000 000
▶ Extend to 11 chars
▶ 4th hash → fully recovered!
▶ etc.

PoC∥GTFO: Hashcat module

▶ 4 partial hashes
▶ Assume API calls on 8th, 9th, 10th and 11th char
▶ Crack the 11-char password

Then extend to any length at no cost

PoC∥GTFO

Worst case: 5h on a 8x RTX 4090 instance at $4/h

But we’re breaking passwords chosen and typed by humans...

Much simpler case example:

iwashere$&@!2=[#)

⇒ 6 s on my laptop to recover iwashere
⇒ +33 ms for the full password

PoC∥GTFO

Worst case: 5h on a 8x RTX 4090 instance at $4/h

But we’re breaking passwords chosen and typed by humans...

Much simpler case example:

iwashere$&@!2=[#)

⇒ 6 s on my laptop to recover iwashere
⇒ +33 ms for the full password

CVE-2024-33669 timeline glimpse

▶ 2024/03/22 – Vuln report
▶ 2024/03/30 – Chrome extension fixed
▶ 2024/04/03 – Firefox extension fixed
▶ 2024/04/04 – Edge extension fixed
▶ 2024/04/11 – Windows application fixed
▶ 2024/04/17 – Synchronized publication & ping Troy Hunt
▶ 2024/04/20 – Pwned Passwords APIv3 documentation updated to include warning

Applied fix: API call only on form submission, only if H(pwd) > 60 bits

https://blog.quarkslab.com/passbolt-a-bold-use-of-haveibeenpwned.html

https://blog.quarkslab.com/passbolt-a-bold-use-of-haveibeenpwned.html

Thank you
https://blog.quarkslab.com

https://blog.quarkslab.com

