
PRISM, a light BEAM
disassembler
Pass The Salt 2024, Lille, France
Damien Cauquil | @virtualabs@mamot.fr

Who am I

▶ R&D Engineer @ Quarkslab

▶ Love hardware and software reverse-engineering

▶ Love programming and creating tools (but not
maintaining them )

▶ Also love challenges !

2/53

Table of Contents

Introduction
Introducing the BEAM virtual machine
State of the Art: a tour of available disassemblers
Why another disassembler ?

Writing a disassembler in 3 days
BEAM and EZ file formats
Instruction and operands encoding
Accessing literals, atoms and functions information
Building our disassembler
Source code release

Conclusion

3/53

Table of Contents

Introduction
Introducing the BEAM virtual machine
State of the Art: a tour of available disassemblers
Why another disassembler ?

Writing a disassembler in 3 days

Conclusion

4/53

Once upon a time ...

5/53

The story of Erlang and its Virtual Machine

▶ First version of Erlang was implemented in Prolog in 1986 by Ericsson

▶ They were multiple attempts to improve performances:
▶ Joe’s Abstract Machine (JAM, 1989)
▶ Turbo Erlang Abstract machine (TEAM, 1991)

▶ Bogumil ”Bogdan” Hausman created the Bogdan’s Erlang Abstract Machine (BEAM)
▶ Hybdrid machine capable of executing native and threaded code
▶ Faster than JAM but reuses some parts

6/53

The erlang VM in a nutshell

▶ Register-based virtual machine

▶ Two register banks used: X and Y
▶ Xn registers are used for passing args
▶ Yn registers are used for storing locals
▶ X0 is used to return a value from a function (accumulator)

▶ Registers can hold different value types like lists, tuples, integers, etc.

▶ VM runs multiple light-weight processes that use a mailbox system to exchange data
▶ It provides scalability ...
▶ ... and performance (load-balancing VM processes)

7/53

Table of Contents

Introduction
Introducing the BEAM virtual machine
State of the Art: a tour of available disassemblers
Why another disassembler ?

Writing a disassembler in 3 days

Conclusion

8/53

Off-the-shelf BEAM disassemblers

▶ beam_disassemble1:
▶ An Erlang module to disassemble BEAM bytecode (Erlang-ception !)
▶ Based on Erlang/OTP compiler module

▶ BEAMdasm (original)2:
▶ Visual Studio Code extension to disassemble BEAM files
▶ Does not work with some BEAM files, no idea why ...
▶ Produced disassembly code is ... puzzling

▶ BEAMdasm (fork)3:
▶ Works a bit better than the previous BEAMdasm
▶ Still unable to disassemble some assemblies !

1https://github.com/sg2342/beam_disassemble
2https://github.com/scout119/beamdasm
3https://github.com/doorgan/beamdasm 9/53

https://github.com/sg2342/beam_disassemble
https://github.com/scout119/beamdasm
https://github.com/doorgan/beamdasm

Table of Contents

Introduction
Introducing the BEAM virtual machine
State of the Art: a tour of available disassemblers
Why another disassembler ?

Writing a disassembler in 3 days

Conclusion

10/53

Why another disassembler ?

11/53

Table of Contents

Introduction
Introducing the BEAM virtual machine
State of the Art: a tour of available disassemblers
Why another disassembler ?

Writing a disassembler in 3 days
BEAM and EZ file formats
Instruction and operands encoding
Accessing literals, atoms and functions information
Building our disassembler
Source code release

Conclusion

12/53

Remember, I love challenges !

▶ R&D Engineer @ Quarkslab

▶ Love hardware and software reverse-engineering

▶ Love programming and creating tools (but not
maintaining them )

▶  Also love challenges ! 

13/53

Writing a disassembler in 3 days

14/53

My plan, my rules

The plan

▶ Find out how BEAM files are organized and how to extract data and code
▶ Find out how instructions are encoded and how to parse them
▶ Code a tool to load a BEAM file into an intermediate representation in memory
▶ Make the tool produce some text from this intermediate representation
▶ Add flakes and glitter by adding some cool extra features

The rules

▶ Stick to a known language, ideally a flexible one (Python in my case)
▶ Keep it simple stupid !
▶ Don’t waste time, really.

15/53

Table of Contents

Introduction

Writing a disassembler in 3 days
BEAM and EZ file formats
Instruction and operands encoding
Accessing literals, atoms and functions information
Building our disassembler
Source code release

Conclusion

16/53

BEAM file format

▶ 12-byte header with IFF and BEAM magic values
▶ Section-based file format
▶ All values are big-endian

17/53

BEAM sections

▶ Section format includes a 4-byte marker followed by 4-byte data length (big-endian)
▶ Markers for different types of sections (AtU8, FunT, ExpT, Code, ...)
▶ Section data format varies from one section to another

18/53

Interesting sections

FunT Section containing the module’s functions definitions and associated code
pointers.

ImpT Section containing the imported functions from external modules.

ExpT Section containing the module’s exported functions.

Atom Section containing the module’s atoms (literals, constants with names).

Abst Section containing the module’s Abstract Syntax Tree, if available.

Code Section containing the code blobs of all functions.

19/53

EZ file format

▶ Basically a ZIP file containing BEAM files !

▶ Can contain directories and sub-directories

▶ Used to package applications, libraries and resources into a single file

20/53

Table of Contents

Introduction

Writing a disassembler in 3 days
BEAM and EZ file formats
Instruction and operands encoding
Accessing literals, atoms and functions information
Building our disassembler
Source code release

Conclusion

21/53

Code section

▶ Contains the module’s functions code

▶ A function’s code is composed of a series of instructions

▶ Instructions are encoded, including an operation code and its operands

▶ 182 known instructions (Erlang/OTP R264)

4https://github.com/erlang/otp/blob/OTP-26.2.5/lib/compiler/src/genop.tab 22/53

https://github.com/erlang/otp/blob/OTP-26.2.5/lib/compiler/src/genop.tab

Code section

23/53

Instruction decoding

▶ Instructions accept a variable number of operands

▶ Number of operands is known as arity

▶ Instructions are defined by their opcode and arity

#
Generic instructions, generated by the compiler. If any of them change number,
arity or semantics, the format number above must be bumped.
#

@spec label Lbl
@doc Specify a module local label.
Label gives this code address a name (Lbl) and marks the start of
a basic block.
1: label/1

24/53

Instruction decoding

▶ Instruction opcode stored on 1 byte
▶ First instruction opcode is 0x01
▶ Instruction 0x01 is label of arity 1 (1 operand)
▶ Operands are encoded as compact terms

25/53

Compact Term Encoding

source: https://beam-wisdoms.clau.se/indepth-beam-file.html
26/53

https://beam-wisdoms.clau.se/indepth-beam-file.html

Encoding a value (basic type)

Value below 16

01234567

Value 0 Tag

Value below 2048

01234567

V12 V11 V10 0 1 Tag

V7 V6 V5 V4 V3 V2 V1 V0

27/53

Encoding larger values (basic type)

Values stored on 2-8 bytes

01234567

N - 2 1 1 Tag

Value bytes

 N bytes

28/53

Extended Term Encoding

▶ BEAM also introduces an Extended Term Encoding

▶ Extended Term Encoding uses nested encoded terms

29/53

Operand decoding

01234567

0x10

0001 0 000
}
Compact Term Decoding

▶ Tag (bits 0-2) is 000, indicating a literal term
▶ Value (bits 4-7) is 0001 (0x01)
▶ Instruction can be interpreted as label #1

30/53

Table of Contents

Introduction

Writing a disassembler in 3 days
BEAM and EZ file formats
Instruction and operands encoding
Accessing literals, atoms and functions information
Building our disassembler
Source code release

Conclusion

31/53

Literals section

▶ This section contains compressed data that need to be decompressed first (Zlib)
▶ Uncompressed data contains a list of literals

32/53

Literals section

▶ Once decompressed, literals can be parsed

33/53

Atoms section

34/53

Functions information section

35/53

Table of Contents

Introduction

Writing a disassembler in 3 days
BEAM and EZ file formats
Instruction and operands encoding
Accessing literals, atoms and functions information
Building our disassembler
Source code release

Conclusion

36/53

Building our disassembler

Desired features

▶ Batch processing: able to load a set of files and analyze them altogether
▶ Xrefs analysis: document internal and external cross-refs in disassembly
▶ Improved disassembly to better see the execution flow
▶ Different notations for literals, strings and atoms

▶ Syntax highlighting to ease analysis

37/53

And after 3 days of intense work ...

$ erlang-prism -h
usage: erlang-prism [-h] [-o OUTPUT_DIR] [-s SEARCH_DIR] [-f BEAM_FILE]

options:
-h, --help show this help message and exit
-o OUTPUT_DIR, --output-dir OUTPUT_DIR

Output directory
-s SEARCH_DIR, --search SEARCH_DIR

Search this directory for BEAM files
-f BEAM_FILE, --file BEAM_FILE

BEAM or EZ file to disassemble

38/53

Disassembling and analyzing files

$ erlang-prism -s ./beam-files -o disass
[i] Searching directory ./beam-files ...
- loading beam edlin.beam ...
- loading beam io_lib_fread.beam ...
- loading beam erl_error.beam ...
- loading beam string.beam ...
[i] Found 4 BEAM modules
[i] Disassembling ...
- analyzing module edlin ...
- analyzing module io_lib_fread ...
- analyzing module erl_error ...
- annotating module edlin ...
- annotating module io_lib_fread ...
- annotating module erl_error ...
- annotating module string ...
[i] Writing disassembled code from module edlin to disass/edlin.beamc
[i] Writing disassembled code from module io_lib_fread to disass/io_lib_fread.beamc
[i] Writing disassembled code from module erl_error to disass/erl_error.beamc
[i] Writing disassembled code from module string to disass/string.beamc

39/53

Disassembly code

; Module: string

label1:

func_info string, list_to_float, 1

; Function <string:list_to_float/1>
label2:
move 'undef', X0

call_ext_only 1, <erlang:nif_error/1>

...

40/53

Cross-module analysis

▶ Load all the modules and solve calls to imported functions

▶ Add annotations for external and internal calls and jumps

41/53

Cross-module analysis

; => Called from label80
label79:
func_info lists, duplicate, 2

; Function <lists:duplicate/2>
; => Externally called from <edlin:multi_line_prompt/1>
; => Externally called from <erl_error:format_arg_errors/3>
; => Externally called from <erl_error:pp_arguments/5>
; ...
; => Externally called from <string:pad/4>
label80:
is_integer label79, X0
is_ge label79, X0<1>, 0x0
move nil, X2
; Calls lists:duplicate/3
call_only 3, label82

42/53

Tuples and Lists everywhere !

; Function <string:to_graphemes/1>
label26:
allocate 1, 1
init_yregs [Y0]

call_ext 1, <unicode_util:gc/1>
is_nonempty_list label27, X0
get_list X0, Y0, X0

; Calls string:to_graphemes/1
call 1, label26
test_heap 2, 1
put_list Y0, X0, X0
deallocate 1
return

43/53

VIM FTW

" Vim syntax file
" Language: BEAM disassembly
" Maintainer: Damien Cauquil
" Latest: 12 September 2023

if exists("b:current_syntax")
finish
endif

" ... more syntax processing here ...

" Labels
syn match beamLabel 'label\d\+:'
syn match beamLabelRef 'label\d\+' contained nextgroup=@beamOperand skipwhite

" Values
syn match beamValue '\d\+' contained nextgroup=@beamOperand skipwhite
syn match beamValue '0x[0-9a-fA-F]\+' contained nextgroup=@beamOperand skipwhite

44/53

VIM FTW

45/53

Table of Contents

Introduction

Writing a disassembler in 3 days
BEAM and EZ file formats
Instruction and operands encoding
Accessing literals, atoms and functions information
Building our disassembler
Source code release

Conclusion

46/53

Source code release


https://github.com/quarkslab/erlang-prism.git

Clone it, fork it, and send pull requests !

47/53

https://github.com/quarkslab/erlang-prism.git

Table of Contents

Introduction
Introducing the BEAM virtual machine
State of the Art: a tour of available disassemblers
Why another disassembler ?

Writing a disassembler in 3 days
BEAM and EZ file formats
Instruction and operands encoding
Accessing literals, atoms and functions information
Building our disassembler
Source code release

Conclusion

48/53

Some kind of a RE nightmare

▶ I had to guess how some recent extended types are encoded

▶ Writing a disassembler from scratch got me headaches

▶ Writing code fast dirty code

▶ Saved me a lot of time but could definitely be better.

49/53

Possible improvements

▶ Some BEAM sections are still unsupported: StrT, Type, ...

▶ Analysis is very rudimentary and could be improved:
▶ Function prototype guessing by analyzing X registers
▶ Better code structure output (try/catch, switch/case)

▶ Porting this tool to Ghidra with a file loader and BEAM instructions support

50/53

PoC vs. Release

51/53

Thanks

Thanks to Ange Albertini for SBUD, Erlang for provid-
ing a very interesting R&D opportunity and the whole
Quarkslab’s Cryptobedded team (and MadSquirrels)
for slides review and feedback !

52/53

Thank you
Contact information:

Email: contact@quarkslab.com

Phone: +33 1 58 30 81 51

Website: https://www.quarkslab.com

https://www.quarkslab.com

BEAM resources

▶ Beam wisdoms: https://beam-wisdoms.clau.se/

▶ The Beam book: https://happi.github.io/theBeamBook/

▶ Erlang BEAM VM specs:
https://www.cs-lab.org/historical_beam_instruction_set.html

▶ Erlang/OTP beam_disasm code: https:
//github.com/erlang/otp/blob/cf8c4267657bf3bce5847bb44793f6ff092fea39/
lib/compiler/src/beam_disasm.erl

54/53

https://beam-wisdoms.clau.se/
https://happi.github.io/theBeamBook/
https://www.cs-lab.org/historical_beam_instruction_set.html
https://github.com/erlang/otp/blob/cf8c4267657bf3bce5847bb44793f6ff092fea39/lib/compiler/src/beam_disasm.erl
https://github.com/erlang/otp/blob/cf8c4267657bf3bce5847bb44793f6ff092fea39/lib/compiler/src/beam_disasm.erl
https://github.com/erlang/otp/blob/cf8c4267657bf3bce5847bb44793f6ff092fea39/lib/compiler/src/beam_disasm.erl

	Introduction
	Introducing the BEAM virtual machine
	State of the Art: a tour of available disassemblers
	Why another disassembler ?

	Writing a disassembler in 3 days
	BEAM and EZ file formats
	Instruction and operands encoding
	Accessing literals, atoms and functions information
	Building our disassembler
	Source code release

	Conclusion
	Appendix

