
1/42

Crypto-agility demystified
A project called Sandwich

Thomas B.1

1SandboxAQ

July 4, 2024

Thomas B. (SandboxAQ) Crypto-agility demystified July 4, 2024 1 / 42

2/42

1 Today’s cryptography
The developer who uses cryptography
Improving how cryptography is used

2 crypto-agility : do better cryptography
Definition
What are the benefits of it?

3 Sandwich: an experiment
What is Sandwich?
What is it offering?
API
Technical challenges

Thomas B. (SandboxAQ) Crypto-agility demystified July 4, 2024 2 / 42

3/42

Quizz

How many cryptography libraries are there in macOS/iOS?

Thomas B. (SandboxAQ) Crypto-agility demystified July 4, 2024 3 / 42

3/42

Quizz

How many cryptography libraries are there in macOS/iOS?

Thomas B. (SandboxAQ) Crypto-agility demystified July 4, 2024 3 / 42

3/42

Quizz

How many cryptography libraries are there in macOS/iOS?

1

Thomas B. (SandboxAQ) Crypto-agility demystified July 4, 2024 3 / 42

3/42

Quizz

How many cryptography libraries are there in macOS/iOS?

5

Thomas B. (SandboxAQ) Crypto-agility demystified July 4, 2024 3 / 42

3/42

Quizz

How many cryptography libraries are there in macOS/iOS?

10

Thomas B. (SandboxAQ) Crypto-agility demystified July 4, 2024 3 / 42

3/42

Quizz

How many cryptography libraries are there in macOS/iOS?

14!

(and probably more!)

Thomas B. (SandboxAQ) Crypto-agility demystified July 4, 2024 3 / 42

4/42

Cryptography libraries on macOS

libboringssl DL AES,ECDH,X509,TLS/SSL,MAC,DSA,CertVerif

libcrypto DL AES,ECDH,X509,TLS/SSL,MAC,DSA

libcommonCrypto DL AES,MAC

CryptoKit F AES,DSA

FindMyCrypto F PubKey Cryptography

libcorecrypto DL AES,ECDH,X509,MAC,DSA

libssl DL TLS/SSL,CertVerif,X509

libcoretls DL TLS/SSL,CertVerif,X509

libtls DL TLS/SSL,X509

Security F AES,ECDH,X509,TLS/SSL,Certverif

DL: dylib, F: Framework

Thomas B. (SandboxAQ) Crypto-agility demystified July 4, 2024 4 / 42

5/42

Which ones were found to be buggy once?

libboringssl DL AES,ECDH,X509,TLS/SSL,MAC,DSA,CertVerif

libcrypto DL AES,ECDH,X509,TLS/SSL,MAC,DSA

libcommonCrypto DL AES,MAC

CryptoKit F AES,DSA

FindMyCrypto F PubKey Cryptography

libcorecrypto DL AES,ECDH,X509,MAC,DSA

libssl DL TLS/SSL,CertVerif,X509

libcoretls DL TLS/SSL,CertVerif,X509

libtls DL TLS/SSL,X509

Security F AES,ECDH,X509,TLS/SSL,Certverif

DL: dylib, F: Framework

Thomas B. (SandboxAQ) Crypto-agility demystified July 4, 2024 5 / 42

6/42

What, bugs?

libboringssl DL cc OpenSSL

libcrypto DL 2021-41581: stack based. b.o.

libcommonCrypto DL CVE-2016-1802: mishandles return values

libcorecrypto DL CVE-2024-23218: private key recovery

libssl DL cc OpenSSL/LibreSSL

libcoretls DL CVE-2015-4000: downgrade attack

libtls DL cc OpenSSL/LibreSSL

Security F CVE-2022-42793: code signing checks bypass

DL: dylib, F: Framework

Thomas B. (SandboxAQ) Crypto-agility demystified July 4, 2024 6 / 42

7/42

What, bugs?

libcrypto - CVE-2021-41581

memory corruption bug

cause: bug in code

fix: patch the code

Thomas B. (SandboxAQ) Crypto-agility demystified July 4, 2024 7 / 42

7/42

What, bugs?

libcommonCrypto - CVE-2016-4711

cleartext disclosure.

cause: weak / poorly documented API

fix: more explicit API, rewrite the documentation, patch the code

Thomas B. (SandboxAQ) Crypto-agility demystified July 4, 2024 7 / 42

7/42

What, bugs?

libcoreCrypto - CVE-2024-23218

secret recovery

cause: non constant-time computation

fix: patch the code

Thomas B. (SandboxAQ) Crypto-agility demystified July 4, 2024 7 / 42

7/42

What, bugs?

Security - CVE-2022-42793

code signing bypass

cause: logical bug: root CA anchoring failure

fix: more verification routine

Thomas B. (SandboxAQ) Crypto-agility demystified July 4, 2024 7 / 42

8/42

Analysis

What are the costs?

more code to maintain

more sw developers

++ attack surface

inventory

Could we find a solution?

Single cryptography library, unified API, support for multiple programming languages

Thomas B. (SandboxAQ) Crypto-agility demystified July 4, 2024 8 / 42

8/42

Analysis

What are the costs?

more code to maintain

more sw developers

++ attack surface

inventory

Could we find a solution?

Single cryptography library, unified API, support for multiple programming languages

Thomas B. (SandboxAQ) Crypto-agility demystified July 4, 2024 8 / 42

9/42

Cryptography in software engineering

Thomas B. (SandboxAQ) Crypto-agility demystified July 4, 2024 9 / 42

10/42

Intro: software engineering

The internet contains numerous cryptography libraries:

Primitives written in various programming languages.

Libraries packaging primitives.

Libraries providing cryptosystems

Examples

pq-crystals

tiny-AES-c

Thomas B. (SandboxAQ) Crypto-agility demystified July 4, 2024 10 / 42

10/42

Intro: software engineering

The internet contains numerous cryptography libraries:

Primitives written in various programming languages.

Libraries packaging primitives.

Libraries providing cryptosystems

Examples

libsodium

PyCryptodome

Thomas B. (SandboxAQ) Crypto-agility demystified July 4, 2024 10 / 42

10/42

Intro: software engineering

The internet contains numerous cryptography libraries:

Primitives written in various programming languages.

Libraries packaging primitives.

Libraries providing cryptosystems

Examples

RusTLS

python.ssl

Thomas B. (SandboxAQ) Crypto-agility demystified July 4, 2024 10 / 42

10/42

Intro: software engineering

The internet contains numerous cryptography libraries:

Primitives written in various programming languages.

Libraries packaging primitives.

Libraries providing cryptosystems

Which one should I use?

Thomas B. (SandboxAQ) Crypto-agility demystified July 4, 2024 10 / 42

11/42

How do we use cryptography today?

Thomas B. (SandboxAQ) Crypto-agility demystified July 4, 2024 11 / 42

12/42

A (cryptography) software engineer’s typical day

1 specifications, requirements

2 pick a library / programming language

3 read documentation, go through
examples, etc.

4 write code

Thomas B. (SandboxAQ) Crypto-agility demystified July 4, 2024 12 / 42

12/42

A (cryptography) software engineer’s typical day

1 specifications, requirements

2 pick a library / programming language

3 read documentation, go through
examples, etc.

4 write code

Thomas B. (SandboxAQ) Crypto-agility demystified July 4, 2024 12 / 42

12/42

A (cryptography) software engineer’s typical day

1 specifications, requirements

2 pick a library / programming language

3 read documentation, go through
examples, etc.

4 write code

Thomas B. (SandboxAQ) Crypto-agility demystified July 4, 2024 12 / 42

12/42

A (cryptography) software engineer’s typical day

1 specifications, requirements

2 pick a library / programming language

3 read documentation, go through
examples, etc.

4 write code

Thomas B. (SandboxAQ) Crypto-agility demystified July 4, 2024 12 / 42

13/42

What difficulties can be anticipated?

Thomas B. (SandboxAQ) Crypto-agility demystified July 4, 2024 13 / 42

14/42

Specifications and requirements

Stage:

one

1. specifications, requirements

spec. mutate

new requirements

new uses

Thomas B. (SandboxAQ) Crypto-agility demystified July 4, 2024 14 / 42

14/42

Specifications and requirements

Stage:

one

1. specifications, requirements

spec. mutate

new requirements

new uses

Thomas B. (SandboxAQ) Crypto-agility demystified July 4, 2024 14 / 42

14/42

Specifications and requirements

Stage:

one

1. specifications, requirements

spec. mutate

new requirements

new uses

Thomas B. (SandboxAQ) Crypto-agility demystified July 4, 2024 14 / 42

14/42

Specifications and requirements

Stage:

one

1. specifications, requirements

spec. mutate

new requirements

new uses

Thomas B. (SandboxAQ) Crypto-agility demystified July 4, 2024 14 / 42

15/42

Backend library

Stage:

two

2. pick a library / programming language

no longer maintained

new major

bugs

!FIPS

lack of scheme support

Thomas B. (SandboxAQ) Crypto-agility demystified July 4, 2024 15 / 42

15/42

Backend library

Stage:

two

2. pick a library / programming language

no longer maintained

new major

bugs

!FIPS

lack of scheme support

Thomas B. (SandboxAQ) Crypto-agility demystified July 4, 2024 15 / 42

15/42

Backend library

Stage:

two

2. pick a library / programming language

no longer maintained

new major

bugs

!FIPS

lack of scheme support

Thomas B. (SandboxAQ) Crypto-agility demystified July 4, 2024 15 / 42

15/42

Backend library

Stage:

two

2. pick a library / programming language

no longer maintained

new major

bugs

!FIPS

lack of scheme support

Thomas B. (SandboxAQ) Crypto-agility demystified July 4, 2024 15 / 42

15/42

Backend library

Stage:

two

2. pick a library / programming language

no longer maintained

new major

bugs

!FIPS

lack of scheme support

Thomas B. (SandboxAQ) Crypto-agility demystified July 4, 2024 15 / 42

15/42

Backend library

Stage:

two

2. pick a library / programming language

no longer maintained

new major

bugs

!FIPS

lack of scheme support

Thomas B. (SandboxAQ) Crypto-agility demystified July 4, 2024 15 / 42

16/42

Learning curve

Stage:

three

3. read documentation, go through examples, etc.

mistakes are likely

APIs

documentation may be incomplete, missing or incorrect

Thomas B. (SandboxAQ) Crypto-agility demystified July 4, 2024 16 / 42

16/42

Learning curve

Stage:

three

3. read documentation, go through examples, etc.

mistakes are likely

APIs

documentation may be incomplete, missing or incorrect

Thomas B. (SandboxAQ) Crypto-agility demystified July 4, 2024 16 / 42

16/42

Learning curve

Stage:

three

3. read documentation, go through examples, etc.

mistakes are likely

APIs

documentation may be incomplete, missing or incorrect

Thomas B. (SandboxAQ) Crypto-agility demystified July 4, 2024 16 / 42

16/42

Learning curve

Stage:

three

3. read documentation, go through examples, etc.

mistakes are likely

APIs

documentation may be incomplete, missing or incorrect

Thomas B. (SandboxAQ) Crypto-agility demystified July 4, 2024 16 / 42

17/42

Outdated documentation: example

Given the following API:

X509 *d2i_X509(X509 **a, const uint8_t **ppin, long length);

How does it behave in the following?:

X509 *x = X509_new();

X509 *y = d2i_X509(&x, ppin, len); // *strongly discouraged* ...

x = NULL;

X509 *y = d2i_X509(&x, ppin, len); // *still strongly discouraged* ...

X509 *y = d2i_X509(NULL, ppin, len); // *still strongly discouraged* ...

x = X509_new_ex(&libctx, ...);

X509 *y = d2i_X509(&x, ppin, len); // sounds good!

Thomas B. (SandboxAQ) Crypto-agility demystified July 4, 2024 17 / 42

17/42

Outdated documentation: example

Given the following API:

X509 *d2i_X509(X509 **a, const uint8_t **ppin, long length);

How does it behave in the following?:

X509 *x = X509_new();

X509 *y = d2i_X509(&x, ppin, len);

// *strongly discouraged* ...

x = NULL;

X509 *y = d2i_X509(&x, ppin, len); // *still strongly discouraged* ...

X509 *y = d2i_X509(NULL, ppin, len); // *still strongly discouraged* ...

x = X509_new_ex(&libctx, ...);

X509 *y = d2i_X509(&x, ppin, len); // sounds good!

Thomas B. (SandboxAQ) Crypto-agility demystified July 4, 2024 17 / 42

17/42

Outdated documentation: example

Given the following API:

X509 *d2i_X509(X509 **a, const uint8_t **ppin, long length);

How does it behave in the following?:

X509 *x = X509_new();

X509 *y = d2i_X509(&x, ppin, len); // *strongly discouraged* ...

x = NULL;

X509 *y = d2i_X509(&x, ppin, len); // *still strongly discouraged* ...

X509 *y = d2i_X509(NULL, ppin, len); // *still strongly discouraged* ...

x = X509_new_ex(&libctx, ...);

X509 *y = d2i_X509(&x, ppin, len); // sounds good!

Thomas B. (SandboxAQ) Crypto-agility demystified July 4, 2024 17 / 42

17/42

Outdated documentation: example

Given the following API:

X509 *d2i_X509(X509 **a, const uint8_t **ppin, long length);

How does it behave in the following?:

X509 *x = X509_new();

X509 *y = d2i_X509(&x, ppin, len); // *strongly discouraged* ...

x = NULL;

X509 *y = d2i_X509(&x, ppin, len);

// *still strongly discouraged* ...

X509 *y = d2i_X509(NULL, ppin, len); // *still strongly discouraged* ...

x = X509_new_ex(&libctx, ...);

X509 *y = d2i_X509(&x, ppin, len); // sounds good!

Thomas B. (SandboxAQ) Crypto-agility demystified July 4, 2024 17 / 42

17/42

Outdated documentation: example

Given the following API:

X509 *d2i_X509(X509 **a, const uint8_t **ppin, long length);

How does it behave in the following?:

X509 *x = X509_new();

X509 *y = d2i_X509(&x, ppin, len); // *strongly discouraged* ...

x = NULL;

X509 *y = d2i_X509(&x, ppin, len); // *still strongly discouraged* ...

X509 *y = d2i_X509(NULL, ppin, len); // *still strongly discouraged* ...

x = X509_new_ex(&libctx, ...);

X509 *y = d2i_X509(&x, ppin, len); // sounds good!

Thomas B. (SandboxAQ) Crypto-agility demystified July 4, 2024 17 / 42

17/42

Outdated documentation: example

Given the following API:

X509 *d2i_X509(X509 **a, const uint8_t **ppin, long length);

How does it behave in the following?:

X509 *x = X509_new();

X509 *y = d2i_X509(&x, ppin, len); // *strongly discouraged* ...

x = NULL;

X509 *y = d2i_X509(&x, ppin, len); // *still strongly discouraged* ...

X509 *y = d2i_X509(NULL, ppin, len);

// *still strongly discouraged* ...

x = X509_new_ex(&libctx, ...);

X509 *y = d2i_X509(&x, ppin, len); // sounds good!

Thomas B. (SandboxAQ) Crypto-agility demystified July 4, 2024 17 / 42

17/42

Outdated documentation: example

Given the following API:

X509 *d2i_X509(X509 **a, const uint8_t **ppin, long length);

How does it behave in the following?:

X509 *x = X509_new();

X509 *y = d2i_X509(&x, ppin, len); // *strongly discouraged* ...

x = NULL;

X509 *y = d2i_X509(&x, ppin, len); // *still strongly discouraged* ...

X509 *y = d2i_X509(NULL, ppin, len); // *still strongly discouraged* ...

x = X509_new_ex(&libctx, ...);

X509 *y = d2i_X509(&x, ppin, len); // sounds good!

Thomas B. (SandboxAQ) Crypto-agility demystified July 4, 2024 17 / 42

17/42

Outdated documentation: example

Given the following API:

X509 *d2i_X509(X509 **a, const uint8_t **ppin, long length);

How does it behave in the following?:

X509 *x = X509_new();

X509 *y = d2i_X509(&x, ppin, len); // *strongly discouraged* ...

x = NULL;

X509 *y = d2i_X509(&x, ppin, len); // *still strongly discouraged* ...

X509 *y = d2i_X509(NULL, ppin, len); // *still strongly discouraged* ...

x = X509_new_ex(&libctx, ...);

X509 *y = d2i_X509(&x, ppin, len);

// sounds good!

Thomas B. (SandboxAQ) Crypto-agility demystified July 4, 2024 17 / 42

17/42

Outdated documentation: example

Given the following API:

X509 *d2i_X509(X509 **a, const uint8_t **ppin, long length);

How does it behave in the following?:

X509 *x = X509_new();

X509 *y = d2i_X509(&x, ppin, len); // *strongly discouraged* ...

x = NULL;

X509 *y = d2i_X509(&x, ppin, len); // *still strongly discouraged* ...

X509 *y = d2i_X509(NULL, ppin, len); // *still strongly discouraged* ...

x = X509_new_ex(&libctx, ...);

X509 *y = d2i_X509(&x, ppin, len); // sounds good!

Thomas B. (SandboxAQ) Crypto-agility demystified July 4, 2024 17 / 42

18/42

Writing code

Stage:

four

4. write code

bugs (mostly logical ones)

usually tight to the programming language

Thomas B. (SandboxAQ) Crypto-agility demystified July 4, 2024 18 / 42

18/42

Writing code

Stage:

four

4. write code

bugs (mostly logical ones)

usually tight to the programming language

Thomas B. (SandboxAQ) Crypto-agility demystified July 4, 2024 18 / 42

18/42

Writing code

Stage:

four

4. write code

bugs (mostly logical ones)

usually tight to the programming language

Thomas B. (SandboxAQ) Crypto-agility demystified July 4, 2024 18 / 42

19/42

crypto-agility : a philosophy

Thomas B. (SandboxAQ) Crypto-agility demystified July 4, 2024 19 / 42

20/42

What is crypto-agility?

Figure: mental gymnastics

Key principles:

configuration-oriented

support for multiple backends

backend agnostic

unified API

switching button for cryptographic
primitives

bonus: programming language
agnostic

Thomas B. (SandboxAQ) Crypto-agility demystified July 4, 2024 20 / 42

20/42

What is crypto-agility?

Figure: mental gymnastics

Key principles:

configuration-oriented

support for multiple backends

backend agnostic

unified API

switching button for cryptographic
primitives

bonus: programming language
agnostic

Thomas B. (SandboxAQ) Crypto-agility demystified July 4, 2024 20 / 42

20/42

What is crypto-agility?

Figure: mental gymnastics

Key principles:

configuration-oriented

support for multiple backends

backend agnostic

unified API

switching button for cryptographic
primitives

bonus: programming language
agnostic

Thomas B. (SandboxAQ) Crypto-agility demystified July 4, 2024 20 / 42

20/42

What is crypto-agility?

Figure: mental gymnastics

Key principles:

configuration-oriented

support for multiple backends

backend agnostic

unified API

switching button for cryptographic
primitives

bonus: programming language
agnostic

Thomas B. (SandboxAQ) Crypto-agility demystified July 4, 2024 20 / 42

20/42

What is crypto-agility?

Figure: mental gymnastics

Key principles:

configuration-oriented

support for multiple backends

backend agnostic

unified API

switching button for cryptographic
primitives

bonus: programming language
agnostic

Thomas B. (SandboxAQ) Crypto-agility demystified July 4, 2024 20 / 42

20/42

What is crypto-agility?

Figure: mental gymnastics

Key principles:

configuration-oriented

support for multiple backends

backend agnostic

unified API

switching button for cryptographic
primitives

bonus: programming language
agnostic

Thomas B. (SandboxAQ) Crypto-agility demystified July 4, 2024 20 / 42

21/42

Figure: Public API / implementation
Thomas B. (SandboxAQ) Crypto-agility demystified July 4, 2024 21 / 42

22/42

crypto-agility : benefits

Thomas B. (SandboxAQ) Crypto-agility demystified July 4, 2024 22 / 42

23/42

Benefits

backed by multiple cryptography libraries

various support, modes, cryptosystems

less error prone

explicit, expressive, no default behavior, configuration-oriented

unified API

one API, many features

configuration serves as documentation

learn once, use everywhere

Polyglot

Invoked from various programming languages

Thomas B. (SandboxAQ) Crypto-agility demystified July 4, 2024 23 / 42

23/42

Benefits

backed by multiple cryptography libraries

various support, modes, cryptosystems

less error prone

explicit, expressive, no default behavior, configuration-oriented

unified API

one API, many features

configuration serves as documentation

learn once, use everywhere

Polyglot

Invoked from various programming languages

Thomas B. (SandboxAQ) Crypto-agility demystified July 4, 2024 23 / 42

23/42

Benefits

backed by multiple cryptography libraries

various support, modes, cryptosystems

less error prone

explicit, expressive, no default behavior, configuration-oriented

unified API

one API, many features

configuration serves as documentation

learn once, use everywhere

Polyglot

Invoked from various programming languages

Thomas B. (SandboxAQ) Crypto-agility demystified July 4, 2024 23 / 42

23/42

Benefits

backed by multiple cryptography libraries

various support, modes, cryptosystems

less error prone

explicit, expressive, no default behavior, configuration-oriented

unified API

one API, many features

configuration serves as documentation

learn once, use everywhere

Polyglot

Invoked from various programming languages

Thomas B. (SandboxAQ) Crypto-agility demystified July 4, 2024 23 / 42

24/42

Benefits: stage 1

one

1. pick a library / programming language

suggested solution

Not choosing is still choosing. - Sartre

>> pick a library / programming
language

read documentation, go through
examples, etc.

write code

Thomas B. (SandboxAQ) Crypto-agility demystified July 4, 2024 24 / 42

24/42

Benefits: stage 1

one

1. pick a library / programming language

suggested solution

Not choosing is still choosing. - Sartre

>> pick a library / programming
language

read documentation, go through
examples, etc.

write code

Thomas B. (SandboxAQ) Crypto-agility demystified July 4, 2024 24 / 42

25/42

Benefits: stage 2

two

2. read documentation, go through
examples, etc.

suggested solution

Unified API, configuration serves as
documentation

pick a library / programming
language

>> read documentation, go
through examples, etc.

write code

Thomas B. (SandboxAQ) Crypto-agility demystified July 4, 2024 25 / 42

25/42

Benefits: stage 2

two

2. read documentation, go through
examples, etc.

suggested solution

Unified API, configuration serves as
documentation

pick a library / programming
language

>> read documentation, go
through examples, etc.

write code

Thomas B. (SandboxAQ) Crypto-agility demystified July 4, 2024 25 / 42

26/42

Benefits: stage 3

three

3. write code

suggested solution

Most expressive, explicit and robust.

!

Remains a problem to solve.

pick a library / programming
language

read documentation, go through
examples, etc.

>> write code

Thomas B. (SandboxAQ) Crypto-agility demystified July 4, 2024 26 / 42

26/42

Benefits: stage 3

three

3. write code

suggested solution

Most expressive, explicit and robust.

!

Remains a problem to solve.

pick a library / programming
language

read documentation, go through
examples, etc.

>> write code

Thomas B. (SandboxAQ) Crypto-agility demystified July 4, 2024 26 / 42

26/42

Benefits: stage 3

three

3. write code

suggested solution

Most expressive, explicit and robust.

!

Remains a problem to solve.

pick a library / programming
language

read documentation, go through
examples, etc.

>> write code

Thomas B. (SandboxAQ) Crypto-agility demystified July 4, 2024 26 / 42

27/42

Sandwich

Authors: Duc Nguyen, Gaëtan Wattiau, Ibraheem Saleh, Jason Goertzen, Laurent Fousse, Mansi Sheth,

Thomas Bailleux, Timothy Harder

Thomas B. (SandboxAQ) Crypto-agility demystified July 4, 2024 27 / 42

28/42

Sandwich: an experiment in crypto-agility

Goals

meet the crypto-agility criteria

open source

integrate PQ/T hybrid and full PQ cryptography schemes

Thomas B. (SandboxAQ) Crypto-agility demystified July 4, 2024 28 / 42

28/42

Sandwich: an experiment in crypto-agility

Goals

meet the crypto-agility criteria

open source

integrate PQ/T hybrid and full PQ cryptography schemes

Thomas B. (SandboxAQ) Crypto-agility demystified July 4, 2024 28 / 42

28/42

Sandwich: an experiment in crypto-agility

Goals

meet the crypto-agility criteria

open source

integrate PQ/T hybrid and full PQ cryptography schemes

Thomas B. (SandboxAQ) Crypto-agility demystified July 4, 2024 28 / 42

29/42

Alright, but why. . . ?

yet another cryptography library. . .

Figure: Standards - xkcd 927
Thomas B. (SandboxAQ) Crypto-agility demystified July 4, 2024 29 / 42

29/42

Alright, but why. . . ?

Quoting Carlos Aguilar-Melchor:

Figure: Carlos’ keynote at SSTIC 20241

1https://www.sstic.org/2024/presentation/invite 2024 1/
Thomas B. (SandboxAQ) Crypto-agility demystified July 4, 2024 29 / 42

30/42

Features

Core written in Rust, API also reachable from C, Python and Go

Three different backends: OpenSSL (3.3.1), BoringSSL, ring2

API comprises protobuf definitions

TLS, asymmetric cryptography, signatures

Similar projects

Envoy (for the TLS part)

2https://crates.io/crates/ring
Thomas B. (SandboxAQ) Crypto-agility demystified July 4, 2024 30 / 42

30/42

Features

Core written in Rust, API also reachable from C, Python and Go

Three different backends: OpenSSL (3.3.1), BoringSSL, ring2

API comprises protobuf definitions

TLS, asymmetric cryptography, signatures

Similar projects

Envoy (for the TLS part)

2https://crates.io/crates/ring
Thomas B. (SandboxAQ) Crypto-agility demystified July 4, 2024 30 / 42

30/42

Features

Core written in Rust, API also reachable from C, Python and Go

Three different backends: OpenSSL (3.3.1), BoringSSL, ring2

API comprises protobuf definitions

TLS, asymmetric cryptography, signatures

Similar projects

Envoy (for the TLS part)

2https://crates.io/crates/ring
Thomas B. (SandboxAQ) Crypto-agility demystified July 4, 2024 30 / 42

30/42

Features

Core written in Rust, API also reachable from C, Python and Go

Three different backends: OpenSSL (3.3.1), BoringSSL, ring2

API comprises protobuf definitions

TLS, asymmetric cryptography, signatures

Similar projects

Envoy (for the TLS part)

2https://crates.io/crates/ring
Thomas B. (SandboxAQ) Crypto-agility demystified July 4, 2024 30 / 42

31/42

Figure: Sandwich - github.com
Thomas B. (SandboxAQ) Crypto-agility demystified July 4, 2024 31 / 42

32/42

API

Reusable protobuf definitions

Configuration based on versioned protobuf definitions

Explicit: no default decisions, no hidden contracts

Thomas B. (SandboxAQ) Crypto-agility demystified July 4, 2024 32 / 42

33/42

API: example

x25519 kyber7683

impl: IMPL_OPENSSL3_OQS_PROVIDER

client {

tls {

common_options {

tls13 {

ke: "x25519_kyber768"

compliance {

hybrid_choice: HYBRID_ALGORITHMS_ALLOW

quantum_safe_choice: QUANTUM_SAFE_ALGORITHMS_ALLOW

classical_choice: CLASSICAL_ALGORITHMS_ALLOW

bit_strength_choice: BIT_STRENGTH_AT_LEAST_128

}

}

x509_verifier {

trusted_cas {

static {

data {

filename: "server_fullchain.pem"

}

format: ENCODING_FORMAT_PEM

}

}

3X25519Kyber768Draft00
Thomas B. (SandboxAQ) Crypto-agility demystified July 4, 2024 33 / 42

34/42

API: example in Rust

use std::io::{

Read as _,

Write as _,

};

use std::net::TcpStream;

use sandwich::tunnel;

// Reads the configuration, for instance from a file.

let configuration: impl AsRef<str> = read_config()?;

// Instantiates a TLS context with the given configuration.

let client_context = tunnel::Context::try_from(configuration)?;

// Instantiates a configuration for TLS tunnels (SNI, SANs, etc.)

let tunnel_configuration = pb_api::TunnelConfiguration::parse(...)?;

// Connect to the server.

let mut tube = client_context.new_tunnel(

TcpStream::connect("example.com:443"),

&tunnel_configuration

)?;

// Performs the TLS handshake.

tube.handshake()?;

// `sandwich::Tunnel` implements [`std::io::Write`] and [`std::io::Read`].

tube.write(b"GET / HTTP/1.1\nHost: example.com\n\n")?;

Thomas B. (SandboxAQ) Crypto-agility demystified July 4, 2024 34 / 42

35/42

Managing third-parties

Many third-parties:

OpenSSL, BoringSSL, ring, protobuf

Python dependencies, Go dependencies, Rust dependencies

Thomas B. (SandboxAQ) Crypto-agility demystified July 4, 2024 35 / 42

35/42

Managing third-parties

Many third-parties:

OpenSSL, BoringSSL, ring, protobuf

Python dependencies, Go dependencies, Rust dependencies

Thomas B. (SandboxAQ) Crypto-agility demystified July 4, 2024 35 / 42

35/42

Managing third-parties

Many third-parties:

OpenSSL, BoringSSL, ring, protobuf

Python dependencies, Go dependencies, Rust dependencies

Solution: Bazel

Bazel build system

Thomas B. (SandboxAQ) Crypto-agility demystified July 4, 2024 35 / 42

35/42

Managing third-parties

Many third-parties:

OpenSSL, BoringSSL, ring, protobuf

Python dependencies, Go dependencies, Rust dependencies

Solution: Bazel

Bazel build system

Extensible

Hermetic builds

Fine-grained control over versions

Thomas B. (SandboxAQ) Crypto-agility demystified July 4, 2024 35 / 42

36/42

Managing third-parties

Bazel is great, but. . .

Rustaceans use Cargo!

Thomas B. (SandboxAQ) Crypto-agility demystified July 4, 2024 36 / 42

36/42

Managing third-parties

Bazel is great, but. . . Rustaceans use Cargo!

Thomas B. (SandboxAQ) Crypto-agility demystified July 4, 2024 36 / 42

37/42

Solution: nested build systems!

Nested build systems:

Define placeholder libraries within a Cargo
workspace

Call Bazel from a Build Script

Collect and dispatch artifacts across the libraries

Thomas B. (SandboxAQ) Crypto-agility demystified July 4, 2024 37 / 42

37/42

Solution: nested build systems!

Nested build systems:

Define placeholder libraries within a Cargo
workspace

Call Bazel from a Build Script

Collect and dispatch artifacts across the libraries

Thomas B. (SandboxAQ) Crypto-agility demystified July 4, 2024 37 / 42

37/42

Solution: nested build systems!

Nested build systems:

Define placeholder libraries within a Cargo
workspace

Call Bazel from a Build Script

Collect and dispatch artifacts across the libraries

Thomas B. (SandboxAQ) Crypto-agility demystified July 4, 2024 37 / 42

37/42

Solution: nested build systems!

Nested build systems:

Define placeholder libraries within a Cargo
workspace

Call Bazel from a Build Script

Collect and dispatch artifacts across the libraries

Thomas B. (SandboxAQ) Crypto-agility demystified July 4, 2024 37 / 42

38/42

Agility at compile time / runtime

feature flags

Let us choose the backend library at compile time.

Thomas B. (SandboxAQ) Crypto-agility demystified July 4, 2024 38 / 42

38/42

Agility at compile time / runtime

feature flags

Let us choose the backend library at compile time.

curl-openssl

curl-libressl

curl-wolfssl

Thomas B. (SandboxAQ) Crypto-agility demystified July 4, 2024 38 / 42

38/42

Agility at compile time / runtime

feature flags

Let us choose the backend library at compile time.

curl-openssl

curl-libressl

curl-wolfssl

Multiple libraries within the same build. . .

Symbol name collisions at link time. . .

. . . caused by: forks. . .

. . . caused by: C

Thomas B. (SandboxAQ) Crypto-agility demystified July 4, 2024 38 / 42

38/42

Agility at compile time / runtime

feature flags

Let us choose the backend library at compile time.

curl-openssl

curl-libressl

curl-wolfssl

Multiple libraries within the same build. . .
Symbol name collisions at link time. . .

. . . caused by: forks. . .

. . . caused by: C

Thomas B. (SandboxAQ) Crypto-agility demystified July 4, 2024 38 / 42

38/42

Agility at compile time / runtime

feature flags

Let us choose the backend library at compile time.

curl-openssl

curl-libressl

curl-wolfssl

Multiple libraries within the same build. . .

Symbol name collisions at link time. . .

. . . caused by: forks. . .

. . . caused by: C

Thomas B. (SandboxAQ) Crypto-agility demystified July 4, 2024 38 / 42

39/42

Solution?

Thomas B. (SandboxAQ) Crypto-agility demystified July 4, 2024 39 / 42

40/42

Bartleby: A symbol renaming toolkit

Bartleby:

Collect symbols from input objects,
archives

Determine the ones that are defined
(t|T)

Discard the others

Prefix their names

Thomas B. (SandboxAQ) Crypto-agility demystified July 4, 2024 40 / 42

40/42

Bartleby: A symbol renaming toolkit

Bartleby:

Collect symbols from input objects,
archives

Determine the ones that are defined
(t|T)

Discard the others

Prefix their names

Thomas B. (SandboxAQ) Crypto-agility demystified July 4, 2024 40 / 42

40/42

Bartleby: A symbol renaming toolkit

Bartleby:

Collect symbols from input objects,
archives

Determine the ones that are defined
(t|T)

Discard the others

Prefix their names

Thomas B. (SandboxAQ) Crypto-agility demystified July 4, 2024 40 / 42

40/42

Bartleby: A symbol renaming toolkit

Bartleby:

Collect symbols from input objects,
archives

Determine the ones that are defined
(t|T)

Discard the others

Prefix their names

Thomas B. (SandboxAQ) Crypto-agility demystified July 4, 2024 40 / 42

41/42

Conclusion

crypto-agility is a forerunner concept

bring cryptography software engineering into 2024!

will be essential for transitioning to Post-Quantum Cryptography seamlessly.

Sandwich source code: https://github.com/sandbox-quantum/sandwich

Bartleby source code: https://github.com/sandbox-quantum/bartleby

Thomas B. (SandboxAQ) Crypto-agility demystified July 4, 2024 41 / 42

42/42
Thank you! Questions ?

Thomas B. (SandboxAQ) Crypto-agility demystified July 4, 2024 42 / 42

	Outline
	Today's cryptography
	The developer who uses cryptography
	Improving how cryptography is used

	crypto-agility: do better cryptography
	Definition
	What are the benefits of it?

	Sandwich: an experiment
	What is Sandwich?
	What is it offering?
	API
	Technical challenges

