
crypto-condor
Compliance testing for cryptographic primitives

Julio Loayza Meneses
July 4th 2024 @ Pass the SALT 2024



whoami

� R&D engineer @ Quarkslab

� Cryptography
� End-of-master internship in 2023

that resulted in this presentation
� Thank you Dahmun, Angie, and

Quarkslab!

@julioloayzam

2/15



Let’s define some terms

Cryptographic primitive

Cryptographic primitives are low-level cryptographic algorithms that can be used to
construct other algorithms or protocols. Example: AES used in the TLS protocol.

Compliance testing

Cryptographic primitives are described in documents called specifications.
� We want to ensure that implementations behave as the algorithm that is described.

3/15



Let’s define some terms

Cryptographic primitive

Cryptographic primitives are low-level cryptographic algorithms that can be used to
construct other algorithms or protocols. Example: AES used in the TLS protocol.

Compliance testing

Cryptographic primitives are described in documents called specifications.
� We want to ensure that implementations behave as the algorithm that is described.

3/15



Compliance testing

How?
We can use test vectors: sets of algorithm inputs and their associated outputs.

� Deterministic algorithms always return the same output when given the same input.

� Example: SHA3-256
msg = 01020304
md = 966DBDCBD0E0348FAA1CCBCE5A62B8E73B0D08955D666DB82243B303D9BD9502

Why?

For audits and certifications, the implementations must conform to the spec.

4/15



Compliance testing

How?
We can use test vectors: sets of algorithm inputs and their associated outputs.

� Deterministic algorithms always return the same output when given the same input.

� Example: SHA3-256
msg = 01020304
md = 966DBDCBD0E0348FAA1CCBCE5A62B8E73B0D08955D666DB82243B303D9BD9502

Why?

For audits and certifications, the implementations must conform to the spec.

4/15



State of the art

Project Wycheproof

� Implements several attacks against popular cryptographic primitives.

� Most attacks are provided as test vectors ⇒ we can integrate them!

� No ready-to-use tool except for Java libraries.

Example: ECDSA

� Signatures are a couple of integers (r, s).

� Implementations must check that r, s ∈ [1, n− 1] (n is the order of the base point).

� pubkey = 3059301306072A86...8D1A974E7341513E
msg = 313233343030
sig = 3006020100020100

� Checks if sig ⇔ (0, 0) is accepted.

5/15



State of the art

Project Wycheproof

� Implements several attacks against popular cryptographic primitives.

� Most attacks are provided as test vectors ⇒ we can integrate them!

� No ready-to-use tool except for Java libraries.

Example: ECDSA

� Signatures are a couple of integers (r, s).

� Implementations must check that r, s ∈ [1, n− 1] (n is the order of the base point).

� pubkey = 3059301306072A86...8D1A974E7341513E
msg = 313233343030
sig = 3006020100020100

� Checks if sig ⇔ (0, 0) is accepted.

5/15



crypto-condor

� Open-source Python library for compliance testing
of implementations of cryptographic primitives.

� Available on PyPI:
python -m pip install crypto-condor

� Provides a Python API and comes with a CLI.

� Includes guides on the primitives supported.
crypto-condor’s logo

6/15



Method guides

� Provide a rundown of key information about the primitive.
� Parameters, modes of operation, different variations...

� Include the corresponding rules and recommendations by the ANSSI.

� Are available in the documentation:
https://quarkslab.github.io/crypto-condor/latest/index.html

7/15

https://quarkslab.github.io/crypto-condor/latest/index.html


The modules

crypto-condor

vectors

_aes

_ecdsa

...

primitives

AES.py

ECDSA.py

...

� Sources of vectors:
� NIST CAVP → compliance.
� Project Wycheproof → resilience.
� Specifications (RFCs, etc.)

� Each primitive has its own module.

� Each module has test functions.

8/15



Two approaches

With implementation:

� The test vectors.

� To agree on the function signature.

With output:

� Input/output values.

� An internal implementation.

9/15



First approach: using a wrapper

10/15



First approach again: using a harness

11/15



Second approach: using the output

12/15



Use-case example: CRY.ME

� A “secure messaging application based on the Matrix protocol containing many
cryptographic vulnerabilities deliberately introduced for educational purposes.”

� Developed by the ANSSI and CryptoExperts.

� Presented at SSTIC 2023.

� https://github.com/ANSSI-FR/cry-me

13/15

https://github.com/ANSSI-FR/cry-me


Demo

14/15



Thank you
Contact information:

Repo: https://github.com/
quarkslab/crypto-condor

Email: contact@quarkslab.com

Website: https://www.quarkslab.com

https://github.com/quarkslab/crypto-condor
https://github.com/quarkslab/crypto-condor
https://www.quarkslab.com


How to add primitives

16/15


	Introduction
	State of the art
	crypto-condor
	Use-case example: CRY.ME
	Appendix

