crypto-condor
Compliance testing for cryptographic primitives

Julio Loayza Meneses
July 4th 2024 @ Pass the SALT 2024

Quarkslab

Y R&D engineer @ Quarkslab

9 Cryptography
¥ End-of-master internship in 2023
that resulted in this presentation
Y Thank you Dahmun, Angie, and
Quarkslab!

@julioloayzam

2/15

Let’s define some terms

Cryptographic primitive

Cryptographic primitives are low-level cryptographic algorithms that can be used to
construct other algorithms or protocols. Example: AES used in the TLS protocol.

3/15

Let’s define some terms

Cryptographic primitive

Cryptographic primitives are low-level cryptographic algorithms that can be used to
construct other algorithms or protocols. Example: AES used in the TLS protocol.

Compliance testing

Cryptographic primitives are described in documents called specifications.
= We want to ensure that implementations behave as the algorithm that is described.

3/15

Compliance testing

How?

We can use test vectors: sets of algorithm inputs and their associated outputs.
> Deterministic algorithms always return the same output when given the same input.
> Example: SHA3-256

msg = 01020304
md = 966DBDCBDOE0348FAA1CCBCE5A62B8E73B0D08955D666DB82243B303D9BD9502

4/15

Compliance testing

How?

We can use test vectors: sets of algorithm inputs and their associated outputs.
> Deterministic algorithms always return the same output when given the same input.
> Example: SHA3-256

msg = 01020304
md = 966DBDCBDOE0348FAA1CCBCE5A62B8E73B0D08955D666DB82243B303D9BD9502

Why?

For audits and certifications, the implementations must conform to the spec.

4/15

State of the art

Project Wycheproof

Y Implements several attacks against popular cryptographic primitives.
2 Most attacks are provided as test vectors = we can integrate them!
> No ready-to-use tool except for Java libraries.

5/15

State of the art

Project Wycheproof

Y Implements several attacks against popular cryptographic primitives.
> Most attacks are provided as test vectors = we can integrate them!

> No ready-to-use tool except for Java libraries.

Example: ECDSA

> Signatures are a couple of integers (r, s).
¥ Implementations must check thatr,s € [1,n — 1]

> pubkey = 3059301306072A86...8D1A974E7341513E
msg = 313233343030
sig = 3006020100020100

¥ Checks if sig < (0,0) is accepted.
5/15

crypto-condor

> Open-source Python library for compliance testing
of implementations of cryptographic primitives.

> Available on PyPI:
python -m pip install crypto-condor

Y Provides a Python API and comes with a CLI.

Y Includes guides on the primitives supported.
crypto-condor’s logo

6/15

Method guides

> Provide a rundown of key information about the primitive.
> Parameters, modes of operation, different variations...

2 Include the corresponding rules and recommendations by the ANSSI.

> Are available in the documentation:
https://quarkslab.github.io/crypto-condor/latest/index.html

7/15

https://quarkslab.github.io/crypto-condor/latest/index.html

The modules

i crypto-condor

LD vectors Y Sources of vectors:
= _aes > NIST CAVP » compliance.
- ¥ Project Wycheproof = resilience.
5 ecdsa ¥ Specifications (RFCs, etc.)
] primitives > Each primitive has its own module.
¥ Each module has test functions.
% AES.py
" ECDSA.py

...

8/15

Two approaches

With implementation: With output:
9 The test vectors. 2 Input/output values.
> To agree on the function signature. > Aninternal implementation.

9/15

First approach: using a wrapper

3. import
K----.

(Message, J?ges‘t)

(message, digest) - message

(M€$Sag& J}ges‘t)

cr‘yp‘t o-condor | RN

Results

Passed: 42
Failed: O

5. message

10/15

First approach again: using a harness

(e
crypto-condor < ---. <

3. message

(message; digest)

(messo\ge_, digest)
(message, digest)

7. Display

: 1. Create

shared lib

4. message

—

P r*ogro\m

cn/f:‘to magic

SR

CC_SHA_256

5. output

Results

Passed: 100

Failed: 42

11/15

Second approach: using the output

rcr*l/(u't o-condom
mesSSage SHA-256
M&SSo.ge/ digest
message/digest
me$$a3e/ dIges't c(,s output
message/digest cst

Results

Passed: 100
Failed: 42

[\
_

12/15

Use-case example: CRY.ME

¥ A “secure messaging application based on the Matrix protocol containing many
cryptographic vulnerabilities deliberately introduced for educational purposes.”

> Developed by the ANSSI and CryptoExperts.
> Presented at SSTIC 2023.
> https://github.com/ANSSI-FR/cry-me

13/15

https://github.com/ANSSI-FR/cry-me

Demo

Thank you

Contact information:

Repo: https://github.com/
quarkslab/crypto-condor

Email: contact@quarkslab.com

Website:

https://www.quarkslab.com

Quarkslab

https://github.com/quarkslab/crypto-condor
https://github.com/quarkslab/crypto-condor
https://www.quarkslab.com

How to add primitives

Adding new primitives

Here are some guidelines on how to add a new primitive. To get started, the handy utils/
add_primitive.py Script creates templates of most of the necessary files:

python utils/add_primitive.py <primitive name>

From here on out, we'll use AES as an example.

Test vectors

First, there are the test vectors. It creates a directory named _AEs to store the source files, protobuf
descriptors, parsing script, and the serialized vectors. We mainly use test vectors from and

, though we may use other sources when needed, such as for AES-CTR
vectors.

	Introduction
	State of the art
	crypto-condor
	Use-case example: CRY.ME
	Appendix

