Quuarkslab

Hydradancer
Using USB3 to improve USB hacking with Facedancer

Thiébaud Fuchs | € kauwua | PTS 2024

https://github.com/kauwua
https://github.com/kauwua

What's USB

Universal Serial Bus: some facts

e USB 1.0 released in 1996

e Universal: power, data, "just works"

e Non-profit organization

e Apple, HP, Intel, Microsoft, Renesas, STMicroelectronics, Texas Instruments, ...

USB-C + use4
P vies CERTIFIED CERTIFIED
= USB Cgé b ((USB 8 0 Gbps

Facedancer: creating USB peripherals in Python

Facedancer's history

e Created in 2012 by Travis Goodspeed
e Now maintained by Great Scott Gadgets (GreatFET, HackRF, ...)
e Recently released v3.0 with a new API !

USB Descriptors

USB 3.x

USB Device

USB Control Endpoint
Address 0 €

USB Configuration 1

‘ !

USB Interface 1 USB Interface 2 I‘é‘lsaisln:ﬁgfeg

Class Vendor Class Audio yP

Mouse
3 — L)

USB Endpoint USB Endpoint USB Endpoint USB Endpoint USB Endpoint
Address 1 Dir IN Address 3 Dir OUT Address 4 Dir IN Addr 5 Dir IN Address 2 Dir IN
USB Endpoint USB Endpoint USB Endpoint USB Endpoint USB Endpoint
Companion 1 Companion 3 Companion 4 Companion 5 Companion 2

USB Descriptors

DEMO: USB mouse goes crazy

CrazyMouse (USBDevice) :
__init__ (self):
super () ._ _init__ (
vendor 1d=0x610Db,
product_id=0x4653,
product_string="Non-suspicious mouse"

configuration = USBConfiguration ()
self.add_configuration (configuration)

interface = USBInterface ()
configuration.add_interface (interface)

in_endpoint = USBEndpoint (number=3, direction=USBDirection.IN)
interface.add_endpoint (in_endpoint)

handle_data_requested (self, endpoint: USBEndpoint) :

logging.info (f"Sending mouse data {data} on {endpoint}.")

$ pytl

Pass the SALT

conference

> Lille, France
Polytech school
> July 3-5 2024

Cynthion/Luna

GreatFET One

Facedancer Host

3 B

crazy- | _ Facedancer __ Board
mouse.py Library backend USB Port

4
(==]

L

Facedancer board

Facedancer2l
USB Port Al g ———
host USB I S i
Target Host : h ey tor . com> S5Tes
User app ---+Operating System
Facedancer Principle

Hydradancer: more stability and speed for Facedancer

USB protocol speeds

e USB2: LS (Low-speed, ~200KB/s), FS (Full-speed, ~1.5MB/s), HS (High-speed, ~50MB/s)
e USB3: SuperSpeed (5Gb/s), SuperSpeed+ (10Gb/s), ...
e USB4: up to 120Gb/s

11

Current limitations of Facedancer

Board Maximum Number of Host
speed endpoints mode
(not EPO)
Facedancer21/Raspdancer USB2 Full- EP1 OUT, yes
speed EP2 m’ EP3 Write average Read average
estimate estimate
GreatFET One USSBZe;‘”' 3 cl)Nu/TB yes GreatFET One Full-speed (one by one) 32.42+0.85KB/s 33.07+1.10 KB/s
P (git-v2021.2.1-64-g2409575 firmware)
Hydradancer USBZ High-— 5IN/5 no Facedancer21 Full-speed (2014-07-05 0.697+0.000 KB/s 0.682+0.000
speed OouT .
firmware) KB/s
(Cynthion/LUNA)(delivery ~ (USB2 ~ (15IN/15 (yes) Facedancer backends speeds
June 2024) High- OUT)
speed)

Facedancer backends functionalities

12

From HydraUSB3 to the new Hydradancer dongle

. f2
]

SH('.u/ S

J

© , 4

R 1

t. i
Soezrs

DOt o

?lllﬂ”i 11

unmn: o I3
ﬂ"--u..g :

.
-
4 -

HydraD. o 8
gazg_ﬂ\uzevo R
evBoard USH
USB2 LS/FS ons obit/s
] hydradancer.com

=
N e r——
! "Tof K 7]
4" __,nL havBoara USEY sen
. o] . th)l—_ ey spvs"b“f“s s
\ "—-—-‘_‘ Wydrabua.com

Boards created by Benjamin Vernoux. Dual-HydraUSB3/Hydradancer prototype/Hydradancer dongle

13

DEMO: mass storage proxy, high-speed

14

python3 ./examples/usbproxy.py

Poste de travail

ik Dossier personnel
M Bureau
bin

| Documents

etc

boot cdrom dev
J9 Musique

lib l

home ib32 lib64 libx32 media mnt opt
0 Images
H vidéos
4 Téléchargements
|§| Systéme de Fichiers
W Corbeille proc root run sbin snap srv sys tmp usr var
Réseau
@ Réseau
p 0:00/0:44 0

LdJd

16

USB3.0/2.0
Host/Device PHY

SerDes Controller
PHY

UART*4
SPI*2
Timer*3

PWMX*4+PWM*3

WCH-CH569W: why?

RISC-V
120MHz

CH569/5

16+32/64/96KB
SRAM

512KB Flash

https.//www.wch-ic.com

Ethernet MAC
RGMII/RMII

DVP

HSPI

SD/EMMC Controller

Encrypt
AES/SM4

17

WCH-CH569W: why??

No USB3 or SerDes documentation (examples, binary blobs)
Please refer to and call the provided subroutine library for specific applications.

Extract from the USB3 section of the CH569 datasheet

Undocumented behavior of USB2 and HSPI hardware
No international forums

Incomplete examples

= no USB2 FS/LS

= no variable size packets in USB3

= no examples of NAK

wch-ch56x-bsp and wch-ch56x-lib

e wch-ch56-bsp: "Reverse Engineering of advanced RISC-V MCU with USB3 & High Speed peripherals"
Benjamin Vernoux, GreHack2022
= Unified SDK with open-source USB3/SerDes Interrupt Handlers
= Various examples and tests
e wch-ch56x-lib: Pushing the limits of the CH569 by experimentation and testing
= Higher-level SDK: USB abstraction, extended USB3/USB2 functionnalities, interrupt processing queue,
logging
= Additionnal tests

18

https://github.com/hydrausb3/wch-ch56x-bsp
https://github.com/hydrausb3/wch-ch56x-lib

First architecture: dual-HydraUSB3

P j <% (
PC USB3 Control board J HSPI Emulation board USB2 4 Target
<z <<

2 4 ¢ J

Dual-HydraUSB3 architecture

19

HSPI (High-Speed Parallel Interface) issues

Hardware does not wait during interrupt, even if it's technically possible

(HRACT) «— HTREQ X

| | I
1 |
| | ¥~ Send end
| |
|

Send request |

|
(HTACK) — HTRDY I ™~ Recv premission :
| | | .

HSPI timing diagram, WCH CH569 Datasheet

20

21

USB-C Configuration, USB PD (Power Delivery)
B USB 1.x/2.x

B USB 3.x/4.x/Alternate modes
(HDMI/DisplayPort/Thunderbolt/MHL)

Standard A
- D+ D-

+

Al A2 A3 Ad A5 A6 A7 A8 A9 Al10 All Al2
ovo) [v] N I o) (v [[
ovo] [=[] (D 2 (s [[
B12 Bll B10 B9 B8 B7 B6 B5 B4 B3 B2 Bl

USB-C: CC BY-SA 4.0, Wikipedia, Chindi.ap ; USB-A: CC BY-SA 3.0, Wikipedia, Simon Eugster

Splitting the USB3 connector in two

SSRX- SSRX+ GND SSTX- SSTX

D- VCC(VBUS)

"Regular" USB3 to USB3-only and USBZ2 connectors

22

New architecture: Hydradancer dongle

Hydradancer <
PC USB3 control emulation USB?2 Target

Hydradancer dongle architecture

23

New architecture: more details

vendor control requests

7 7 N 7)
EPO 7
EP1 (event endpoint) Endpoints
g status sync
ep_slatus T >
: ep0 IN/OUT
<« » ep_mappmg[(}] A YT 7 LS I N < >
PC i emulation ept INJOUT Target
> ep. MappINg[1] =« vh v i st e e < >
ep2 IN/OUT
< —>» ep_mapping[Q] 11 SN LA Al I A A <
ep7 IN/OUT
€ g ep_mapping[?] A R P11 S) P A, < >

Facedancer backend

24

Interrupt hell

Normal Flow Interrupt USB
while(true) Handler Controller
Jump to IRQ Handler OEIT
> packet
USB
Saving time for interrupts to happen H;Eé)le' ,
e Zero-copy (no memcpy) - (DUSY) - OUth
e Store data, handle in normal flow patie
e Hardware busy while in interrupt

) Back to normal flow

Dealing with interrupts

25

26

Debugging USB on the WCH CH569

USB protocol analyzer required

= A Tadarov USB Sniffer ($60), open-source,
Wireshark plugin

= Beagle USB 480 ($$%$%$1,295)

Wireshark/usbmon: USB transfers (not packet

level)

lsusb -v —-d wvid:pid

dmesg

udevadm monitor

UART logs, beware the interrupts

https://github.com/ataradov/usb-sniffer

https://github.com/ataradov/usb-sniffer

Results and comparison: speedtests

UBS2 FS speed results for each Facedancer backend

USB2 FS Max Bandwidth

Hydradancer Full-speed (priming)

Hydradancer Full-speed I

GreatFET One Full-speed un par un -

Facedancer21 Full-speed

0 200 400 600 800 1000 1200 1400
KB/s

28

29

Results and comparison: speedtests

Write average
estimate

Read average
estimate

Hydradancer High-speed

3911+£151 KB/s

2653196 KB/s

Hydradancer High-speed (priming)

37881194 KB/s

2962+118 KB/s

Hydradancer Full-speed (priming)

369.80+2.46 KB/s

352.35+6.66 KB/s

Hydradancer Full-speed

369.6614.98 KB/s

206.64+/.32 KB/s

GreatFET One Full-speed (one by one) (git-v2021.2.1-64-
2409575 firmware)

32.42+0.85 KB/s

33.07+£1.10 KB/s

Facedancer21 Full-speed (2014-07-05 firmware)

0.697+0.000 KB/s

0.682+0.000 KB/s

Pull-request, fixing bugs

e } Hydradancer fixes for Facedancer #92 : fix for bugs encountered while playing with Facedancer

e 19 New Hydradancer backend for Facedancer #93 : based on the above branch/PR. Adds the new Hydradancer
backend

e {1 New mouse peripheral and tests #94 : a mouse peripheral i implemented when starting with Facedancer, speed
and loopback tests that could need more polish

https.//github.com/greatscottgadgets/facedancer/issues/95

30

https://github.com/greatscottgadgets/facedancer/issues/95

USB as a pentester target: probing hosts for supported
peripherals

Existing tools

e umap2: host fuzzing and scanning.

Includes many peripherals BUT buggy, unmaintained for 3 years, same for the kitty fuzzing framework.
Facedancer files included in project, not as Python module.

e Nnu-map: umap2 translation to modern Facedancer (Facedancer as Python module), "from friends of
@greatscottgadgets".

Fuzzing framework still unmaintained, mostly same bugs and incomplete.

There's a need for new fuzzing and scanning tools based on Facedancer!

32

https://github.com/nccgroup/umap2
https://github.com/cisco-sas/kitty
https://github.com/usb-tools/nu-map

USBScan: unreleased Python tool to scan USB hosts

e Fixed umap2 peripherals
e Fixed bugs in Facedancer (PR merged)
e |nject detection in the USBDevice oObject, "transparent”

¢ JSON-based
e USB classes/devices lists from linux-hardware.org/usb.org
e USB class/device/vendor scan

33

When is a USB peripheral trully handled by the system? Some hints

e Successful configuration is not enough:
any USB peripheral can do it

e Detection based on
Class/Vendor/Reserved requests

e Detection based on endpoint activity
(excluding priming)

34

Table 9-2. Format of Setup Data

Offset

Field

Size

Value

Description

bmRequestType

1

Bitmap

Characteristics of request:

D7: Data transfer direction
0 = Host-to-device
1 = Device-to-host

D6...5: Type
0 = Standard
1 = Class
2 = Vendor
3 = Reserved

D4...0: Recipient
0 = Device
1 = Interface
2 = Endpoint
3 = Other
4...31 = Reserved

USB 2.0 specification, 9.3

{"supported":
{"supported":
{"supported":
{"supported":
{"supported":
{"supported":
{"supported":
{"supported":

, "usb2_speed":1,
, "usb2_speed":1,
, "usb2_speed":1,
, "usb2_speed":1,'

, "usb2_speed":
, "usb2_speed":
, "usb2_speed":
, "usb2_speed":

1
1
1
1

,"interface_class_code":
"interface class code":
: 88,
"interface class code":

14

4

14

DEMO: scan of a computer

"interface_class_code":0,"interface_subclass_code":0,"interface_protocol_code":0,"device_class":0, "device
1,"interface_subclass_code":0, "interface_protocol_code":0, "device_class":0, "device
"interface_class_code":1,"interface_subclass_code":0,"interface_protocol_code":0,"device_class":1, "device

"interface class_code":

"interface class_code"

88,
88,

88,

"interface_ subclass_code":
"interface subclass_code":

"interface_ subclass_code"

'interface_class_code":1,"interface_subclass_code":1,"interface_protocol_code":0,"device_class":0, "device_

0,"interface_protocol_code":0,"device_class":0, "devic
0,"interface_protocol_code":0, "device_class":88, "devi

:66,"interface_protocol_code":0, "device_class":0, "devi
"interface subclass_code":

66, "interface_protocol_code":0, "device_class":88, "dev

Not a silver bullet: xpad, the Linux driver for XBox controllers

T

{ hub_event J

static int xpad_probe (usb_interface *intf, const usb_device
{
\ 4
deVice add usb_device *udev = interface_to_usbdev(intf);
- usb_xpad *xpad;
USB de\”Ce usb_endpoint_descriptor *ep_irq in, *ep_irqg_out;
J' int i, error;
bUS_prObe_deVICe (intf->cur_altsetting->desc.bNumEndpoints != 2)
Search for USB device driver ~ENODEV;

Y

usbcore
usb_generic_driver_probe

h 4

[usb_set_configuration J

device_add
USB interface

v
[search for USB interface driver }

xpad
xpad_probe

Simplified Linux USB driver stack

36

Conclusion

38

Renewed interest in Facedancer: v3.0, USB2 High-Speed with Cynthion and Hydradancer
https://github.com/HydraDancer/hydradancer_fw: open to contributions and issues
https://twitter.com/hydrabus: Hydradancer dongle will be announced there

USBScan: might be open-sourced

We need new USB fuzzing tools based on Facedancer!

https://github.com/HydraDancer/hydradancer_fw
https://twitter.com/hydrabus

Thanks! Questions?

¥ quarkslab

N tfuchs@quarkslab.com

39

https://twitter.com/quarkslab
https://twitter.com/quarkslab
mailto:tfuchs@quarkslab.com
mailto:tfuchs@quarkslab.com

raw-gadget: USB3 in Facedancer one day?

41

What's raw-gadget?

raw-gadget: used in Google's syzkaller to fuzz the Linux USB drivers
Similar to usbfs driver/libusb but for USB devices

Not yet USB3, but not limited by technology

Need a UDC (USB Device Controller) in your system

https://github.com/xairy/raw-gadget
https://github.com/xairy/raw-gadget/issues/61

raw-gadget and Facedancer

There's a prototype Facedancer backend!

42

https://github.com/xairy/Facedancer/tree/rawgadget

