

Hydradancer

Using USB3 to improve USB hacking with Facedancer

Thiébaud Fuchs | 😯 kauwua | PTS 2024

What's USB

Universal Serial Bus: some facts

- USB 1.0 released in 1996
- Universal: power, data, "just works"
- Non-profit organization
- Apple, HP, Intel, Microsoft, Renesas, STMicroelectronics, Texas Instruments, ...

USB-C®

USB4®

Facedancer: creating USB peripherals in Python

Facedancer's history

Q

- Created in 2012 by Travis Goodspeed
- Now maintained by Great Scott Gadgets (GreatFET, HackRF, ...)
- Recently released v3.0 with a new API!

USB Descriptors

6

C

DEMO: USB mouse goes crazy

```
class CrazyMouse(USBDevice):
  def __init__(self):
      super().__init___(
          vendor_id=0x610b,
           product_id=0x4653,
           product_string="Non-suspicious mouse"
       configuration = USBConfiguration()
       self.add_configuration(configuration)
       interface = USBInterface()
       configuration.add_interface(interface)
       in_endpoint = USBEndpoint(number=3, direction=USBDirection.IN)
       interface.add_endpoint(in_endpoint)
  def handle_data_requested(self, endpoint: USBEndpoint):
       logging.info(f"Sending mouse data {data} on {endpoint}.")
```


Pass the SALT conference > Lille, France Polytech school > July 3-5 2024

Register here (free and required)

▶ 0:07 / 0:52

How it works

Facedancer Principle

Hydradancer: more stability and speed for Facedancer

- USB2: LS (Low-speed, ~200KB/s), FS (Full-speed, ~1.5MB/s), HS (High-speed, ~50MB/s)
- USB3: SuperSpeed (5Gb/s), SuperSpeed+ (10Gb/s), ...
- USB4: up to 120Gb/s

Current limitations of Facedancer

Board	Maximum speed	Number of endpoints (not EP0)	Host mode
Facedancer21/Raspdancer	USB2 Full- speed	EP1 OUT, EP2 IN, EP3 IN	yes
GreatFET One	USB2 Full- speed	3 IN / 3 OUT	yes
Hydradancer	USB2 High- speed	5 IN / 5 OUT	no
(Cynthion/LUNA)(delivery June 2024)	(USB2 High- speed)	(15 IN / 15 OUT)	(yes)

Facedancer backends functionalities

	Write average estimate	Read average estimate
GreatFET One Full-speed (one by one) (git-v2021.2.1-64-g2409575 firmware)	32.42±0.85 KB/s	33.07±1.10 KB/s
Facedancer21 Full-speed (2014-07-05 firmware)	0.697±0.000 KB/s	0.682±0.000 KB/s

Boards created by Benjamin Vernoux. Dual-HydraUSB3/Hydradancer prototype/Hydradancer dongle

DEMO: mass storage proxy, high-speed

WCH-CH569W: why?

https://www.wch-ic.com

WCH-CH569W: why??

No USB3 or SerDes documentation (examples, binary blobs)

Please refer to and call the provided subroutine library for specific applications.

Extract from the USB3 section of the CH569 datasheet

- Undocumented behavior of USB2 and HSPI hardware
- No international forums
- Incomplete examples
 - no USB2 FS/LS
 - no variable size packets in USB3
 - no examples of NAK

wch-ch56x-bsp and wch-ch56x-lib

- wch-ch56-bsp: "Reverse Engineering of advanced RISC-V MCU with USB3 & High Speed peripherals"
 Benjamin Vernoux, GreHack2022
 - Unified SDK with open-source USB3/SerDes Interrupt Handlers
 - Various examples and tests
- wch-ch56x-lib: Pushing the limits of the CH569 by experimentation and testing
 - Higher-level SDK: USB abstraction, extended USB3/USB2 functionnalities, interrupt processing queue, logging
 - Additionnal tests

First architecture: dual-HydraUSB3

Hardware does not wait during interrupt, even if it's technically possible

HSPI timing diagram, WCH CH569 Datasheet

Q

- **USB-C Configuration, USB PD (Power Delivery)**
- USB 1.x/2.x
- USB 3.x/4.x/Alternate modes (HDMI/DisplayPort/Thunderbolt/MHL)

USB-C: CC BY-SA 4.0, Wikipedia, Chindi.ap; USB-A: CC BY-SA 3.0, Wikipedia, Simon Eugster

Splitting the USB3 connector in two

"Regular" USB3 to USB3-only and USB2 connectors

Facedancer backend

Interrupt hell

Saving time for interrupts to happen

- Zero-copy (no memcpy)
- Store data, handle in normal flow
- Hardware busy while in interrupt

Dealing with interrupts

Debugging USB on the WCH CH569

- USB protocol analyzer required
 - A.Tadarov USB Sniffer (\$60), open-source,
 Wireshark plugin
 - Beagle USB 480 (\$\$\$1,295)
- Wireshark/usbmon: USB transfers (not packet level)
- lsusb -v -d vid:pid
- dmesg
- udevadm monitor
- UART logs, beware the interrupts

https://github.com/ataradov/usb-sniffer

#

Results and comparison: speedtests

	Write average estimate	Read average estimate
Hydradancer High-speed	3911±151 KB/s	2653±96 KB/s
Hydradancer High-speed (priming)	3788±194 KB/s	2962±118 KB/s
Hydradancer Full-speed (priming)	369.80±2.46 KB/s	352.35±6.66 KB/s
Hydradancer Full-speed	369.66±4.98 KB/s	266.64±7.32 KB/s
GreatFET One Full-speed (one by one) (git-v2021.2.1-64-g2409575 firmware)	32.42±0.85 KB/s	33.07±1.10 KB/s
Facedancer21 Full-speed (2014-07-05 firmware)	0.697±0.000 KB/s	0.682±0.000 KB/s

Pull-request, fixing bugs

- Phydradancer fixes for Facedancer #92: fix for bugs encountered while playing with Facedancer
- **!** New Hydradancer backend for Facedancer #93: based on the above branch/PR. Adds the new Hydradancer backend
- **[1]** New mouse peripheral and tests #94: a mouse peripheral i implemented when starting with Facedancer, speed and loopback tests that could need more polish

https://github.com/greatscottgadgets/facedancer/issues/95

USB as a pentester target: probing hosts for supported peripherals

- umap2: host fuzzing and scanning. Includes many peripherals BUT buggy, unmaintained for 3 years, same for the kitty fuzzing framework. Facedancer files included in project, not as Python module.
- nu-map: umap2 translation to modern Facedancer (Facedancer as Python module), "from friends of @greatscottgadgets".

 Fuzzing framework still unmaintained, mostly same bugs and incomplete.

There's a need for new fuzzing and scanning tools based on Facedancer!

- Fixed umap2 peripherals
- Fixed bugs in Facedancer (PR merged)
- Inject detection in the USBDevice object, "transparent"
- JSON-based
- USB classes/devices lists from linux-hardware.org/usb.org
- USB class/device/vendor scan

When is a USB peripheral trully handled by the system? Some hints

• Successful configuration is not enough: any USB peripheral can do it

- Detection based on Class/Vendor/Reserved requests
- Detection based on endpoint activity (excluding priming)

Table 9-2. Format of Setup Data

Offset	Field	Size	Value	Description	
0	bmRequestType	1	Bitmap	Characteristics of request:	
				D7: Data transfer direction 0 = Host-to-device 1 = Device-to-host	
				D65: Type 0 = Standard 1 = Class 2 = Vendor 3 = Reserved	
				D40: Recipient 0 = Device 1 = Interface 2 = Endpoint 3 = Other 431 = Reserved	

USB 2.0 specification, 9.3

DEMO: scan of a computer

C

```
"supported": false, "usb2_speed":1, "interface_class_code":0, "interface_subclass_code":0, "interface_protocol_code":0, "device_class":0, "device
{	t ("supported": false,"usb2\_speed":1,"interface\_class\_code":1,"interface\_subclass\_code":0,"interface\_protocol_code":0,"device_class":0,"device}
"supported": false, "usb2_speed":1, "interface_class_code":1, "interface_subclass_code":0, "interface_protocol_code":0, "device_class":1, "device_
{	t "supported": true, "usb2\_speed":1, "interface\_class\_code":1, "interface_subclass_code":1, "interface_protocol_code":0, "device_class":0, "device_c
["supported": false, "usb2\_speed":1, "interface\_class\_code":88, "interface\_subclass\_code":0, "interface\_protocol_code":0, "device_class":0, "device_class"
"supported":false,"usb2_speed":1,"interface_class_code":88,"interface_subclass_code":0,"interface_protocol_code":0,"device_class":88,"devi
"supported":false,"usb2_speed":1,"interface_class_code":88,"interface_subclass_code":66,"interface_protocol_code":0,"device_class":0,"devi
"supported": false, "usb2_speed":1, "interface_class_code":88, "interface_subclass_code":66, "interface_protocol_code":0, "device_class":88, "dev
```

Not a silver bullet: xpad, the Linux driver for XBox controllers

Simplified Linux USB driver stack

```
static int xpad_probe(struct usb_interface *intf, const struct usb_device
    struct usb_device *udev = interface_to_usbdev(intf);
    struct usb_xpad *xpad;
    struct usb_endpoint_descriptor *ep_irq_in, *ep_irq_out;
    int i, error;
   if (intf->cur_altsetting->desc.bNumEndpoints != 2)
        return -ENODEV;
```

Conclusion

- Renewed interest in Facedancer: v3.0, USB2 High-Speed with Cynthion and Hydradancer
- https://github.com/HydraDancer/hydradancer_fw: open to contributions and issues
- https://twitter.com/hydrabus: Hydradancer dongle will be announced there
- USBScan: might be open-sourced
- We need new USB fuzzing tools based on Facedancer!

Thanks! Questions?

Q

- **y** quarkslab
- **✓** tfuchs@quarkslab.com

raw-gadget: USB3 in Facedancer one day?

What's raw-gadget?

- raw-gadget: used in Google's syzkaller to fuzz the Linux USB drivers
- Similar to usbfs driver/libusb but for USB devices
- Not yet USB3, but not limited by technology
- Need a UDC (USB Device Controller) in your system

raw-gadget and Facedancer

Q

There's a prototype Facedancer backend!