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What are we actually doing here?
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Motivation

• Modern security features prevent simple hardware attacks, such as:


• Extract, modify and reflash firmware: Tasmota & similar FOSS 
alternative firmwares for embedded devices or custom-made 
ones


• Get full access to devices you own 
(root shell, debug access, ...)


• Performing (security) research on embedded devices when such 
levels of access are not available


• High entry barrier towards defeating these new security features
https://commons.wikimedia.org/wiki/

File:Segger_J-Link_PRO.jpg
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https://opencircuit.shop/product/ic-test-
clip-soic-8-pin



EMFI =
Changing execution path through magnetic fields

static bool debug_enable = false 
void setup() { 
// check if debugging enabled 
if (debug_enable) { 
enable_debugging() 

} 
} 
void loop() {}
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EMFI =

• Injecting "faults" directly into an IC can force it to behave differently and give 
us the access we need.


• Physical FI: affecting chip's internal behavior through external conditions.


• EMFI: electromagnetic pulses on SoC's / memory → induce currents 
→ affect transistors 
→ change execution path
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EMFI Setup Requirements

• Location & timing essential: 
fault exactly at the desired 
instruction and SoC area


• Code, binary and side channel 
analysis help discover timing 
for potential fault


• FPGA: 400MHz = 2.5ns steps

https://commons.wikimedia.org/wiki/
File:GD32F103CBT6-Si-HD.jpg

Reset Line

EMFI Trigger

1200ns delay 200ns pulse 

Boot starts Fault injected6



EMFI Setup
positioning platform

delay generator

EMFI pulser

DUT
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hardware reset



EMFI Setup
Positioning Platform

• CNCs or 3D printers can be used 
interchangeably due to GCODE


• Both are available for very low cost, come with 
motor controllers and everything needed


• Lead screws have approx. 10x more backlash 
→ if budget allows, use belts


• Motorized XY stages offer small benefit for the 
price and IoT target

https://aliexpress.com

https://aliexpress.com

https://www.thk.com

https://aliexpress.com
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EMFI Setup
Delay Generator

• Raspberry Pi Pico: custom firmware 
by me (NEW!! 🎉)


• FPGA: chip.fail FOSS bitstream 
by @stacksmashing 


• ChipWhisperer by @colinoflynn

https://www.newae.com/products/NAE-
CWHUSKY
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https://www.raspberrypi.com/products/
raspberry-pi-pico/



EMFI Setup
EMFI Pulser

• ChipSHOUTER by @colinoflynn


• PicoEMP by @colinoflynn, @stacksmashing et al.


• SiliconToaster by Ledger
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EMFI Setup
Hardware Reset
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# Prepare hardware 
platform.move(0,0) 

glitcher.arm() 

delay.set_delay(100) 
delay.set_width(100) 
delay.arm() 

# Reset target 
hw_reset.reset() 

# Wait for result 
res = target.read()



EMFI Setup
Custom Software
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Fault campaignEMFIControl Result visualization



EMFI Setup

CNC Controller

EMFI Pulser

DUT

Delay Generator

Serial <> USB
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What are we actually doing here?
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Results
IoT chips with "physical security features"
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Results
IoT chips with "physical security features"

• Loop test:


1. Trigger GPIO pin high


2. Count from 0 to 255


3. Trigger GPIO pin low


4. Check the result
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Results
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GPIO pin
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counting...
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Fault Campaign
Visualization of chip behavior under faults

• Successful faults, i.e. instruction skips 
in the top right corner


• Could be applied to any app-level 
code, bootloader, custom security 
measures, ... using the right timings
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Conclusion

• Low-cost, FOSS / OSHW setup


• ~150€ X-Y stage 


• ~50-2000€ EMFI pulser


• ~10€ delay generator


• Can be improved with little extra cost


• 3D printer (belts)


• Higher voltage pulser
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Q & A
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github.com/unixb0y/EMFI-Resources 

@unixb0y@chaos.social 

@unixb0y 

dtoldo@seemoo.de


