
Davide Toldo
Secure Mobile Networking Lab - SEEMOO 
Technical University of Darmstadt, Germany

Affordable* EMFI Attacks
Against Modern IoT Chips

1

Davide Toldo
Secure Mobile Networking Lab - SEEMOO 
Technical University of Darmstadt, Germany

Affordable* EMFI Attacks
Against Modern IoT Chips
* and open-source

1

What are we actually doing here?

2

Motivation

• Modern security features prevent simple hardware attacks, such as:

• Extract, modify and reflash firmware: Tasmota & similar FOSS
alternative firmwares for embedded devices or custom-made
ones

• Get full access to devices you own 
(root shell, debug access, ...)

• Performing (security) research on embedded devices when such
levels of access are not available

• High entry barrier towards defeating these new security features
https://commons.wikimedia.org/wiki/

File:Segger_J-Link_PRO.jpg

3

https://opencircuit.shop/product/ic-test-
clip-soic-8-pin

EMFI =
Changing execution path through magnetic fields

static bool debug_enable = false
void setup() {
// check if debugging enabled
if (debug_enable) {
enable_debugging()

}
}
void loop() {}

4

🧲

EMFI =
Changing execution path through magnetic fields

static bool debug_enable = false
void setup() {
// check if debugging enabled
if (debug_enable) {
enable_debugging()

}
}
void loop() {}

true

4

🧲

EMFI =
Changing execution path through magnetic fields

static bool debug_enable = false
void setup() {
// check if debugging enabled
if (debug_enable) {
enable_debugging()

}
}
void loop() {}

true

!

4

🧲

EMFI =

• Injecting "faults" directly into an IC can force it to behave differently and give
us the access we need.

• Physical FI: affecting chip's internal behavior through external conditions.

• EMFI: electromagnetic pulses on SoC's / memory → induce currents 
→ affect transistors 
→ change execution path

5

🧲

EMFI Setup Requirements

• Location & timing essential:
fault exactly at the desired
instruction and SoC area

• Code, binary and side channel
analysis help discover timing
for potential fault

• FPGA: 400MHz = 2.5ns steps

https://commons.wikimedia.org/wiki/
File:GD32F103CBT6-Si-HD.jpg

Reset Line

EMFI Trigger

1200ns delay 200ns pulse

Boot starts Fault injected6

EMFI Setup
positioning platform

delay generator

EMFI pulser

DUT

7

hardware reset

EMFI Setup
Positioning Platform

• CNCs or 3D printers can be used
interchangeably due to GCODE

• Both are available for very low cost, come with
motor controllers and everything needed

• Lead screws have approx. 10x more backlash
→ if budget allows, use belts

• Motorized XY stages offer small benefit for the
price and IoT target

https://aliexpress.com

https://aliexpress.com

https://www.thk.com

https://aliexpress.com

8

EMFI Setup
Delay Generator

• Raspberry Pi Pico: custom firmware 
by me (NEW!! 🎉)

• FPGA: chip.fail FOSS bitstream 
by @stacksmashing

• ChipWhisperer by @colinoflynn

https://www.newae.com/products/NAE-
CWHUSKY

9

https://www.raspberrypi.com/products/
raspberry-pi-pico/

EMFI Setup
EMFI Pulser

• ChipSHOUTER by @colinoflynn

• PicoEMP by @colinoflynn, @stacksmashing et al.

• SiliconToaster by Ledger

10

EMFI Setup
Hardware Reset

11

Prepare hardware
platform.move(0,0)

glitcher.arm()

delay.set_delay(100)
delay.set_width(100)
delay.arm()

Reset target
hw_reset.reset()

Wait for result
res = target.read()

EMFI Setup
Custom Software

12

Fault campaignEMFIControl Result visualization

EMFI Setup

CNC Controller

EMFI Pulser

DUT

Delay Generator

Serial <> USB

13

Hardware Reset

EMFI Setup

CNC Controller

EMFI Pulser

DUT

Delay Generator

Serial <> USB

13

Hardware Reset

What are we actually doing here?

14

Results
IoT chips with "physical security features"

15

Results
IoT chips with "physical security features"

15

Results
IoT chips with "physical security features"

16

Results
IoT chips with "physical security features"

• Loop test:

1. Trigger GPIO pin high

2. Count from 0 to 255

3. Trigger GPIO pin low

4. Check the result

17

GPIO pin

FI signal

Results
IoT chips with "physical security features"

• Loop test:

1. Trigger GPIO pin high

2. Count from 0 to 255

3. Trigger GPIO pin low

4. Check the result

17

GPIO pin

FI signal

counting...

Results
IoT chips with "physical security features"

• Loop test:

1. Trigger GPIO pin high

2. Count from 0 to 255

3. Trigger GPIO pin low

4. Check the result

17

GPIO pin

FI signal

counting...

🧲

Results
IoT chips with "physical security features"

• Loop test:

1. Trigger GPIO pin high

2. Count from 0 to 255

3. Trigger GPIO pin low

4. Check the result

17

GPIO pin

FI signal

check result
counting...

🧲

Fault Campaign
Visualization of chip behavior under faults

• Successful faults, i.e. instruction skips
in the top right corner

• Could be applied to any app-level
code, bootloader, custom security
measures, ... using the right timings

18

Conclusion

• Low-cost, FOSS / OSHW setup

• ~150€ X-Y stage

• ~50-2000€ EMFI pulser

• ~10€ delay generator

• Can be improved with little extra cost

• 3D printer (belts)

• Higher voltage pulser

19

Q & A

20

github.com/unixb0y/EMFI-Resources

@unixb0y@chaos.social

@unixb0y

dtoldo@seemoo.de

