
Google killed JA3 !
Should we be scared ?

2024/07/05 | Eric Leblond

Who am I ?

2

Eric Leblond

• Co founder & CTO of Stamus Networks
• Member of OISF’s board
• Contributor to Suricata since 2009
• Co-author of “The Security Analyst's

Guide to Suricata”

Stamus Networks:
• Editor of a Suricata based NDR

solution
• Contributor to Suricata Hi Eloïse ;-)

Security is about building wall…

Encryption by default has won

• Introduction of SSL in 1995
• Everywhere since 2020
• Thanks Let’s Encrypt !

• People can change the world
• Privacy is now a thing

• For the content

Source:
https://www.eff.org/deeplinks/2023/12/year-review-last-mile-encrypting-web

Privacy 1 - Security 0

• Blindness of all analysis tools relaying on traffic
• What is left is:

• Decryption devices
• Analysis of TLS handshake

TLS Handshake Analysis: Client Hello

Thanks
Wireshark

TLS Handshake Analysis: Server Hello

How to get information about client ?

Building JA3

• Client identification algorithm
• Developed by John Althouse, Jeff Atkinson, Josh Atkins
• Created around June 2017
• Use the first message sent by the client to build a fingerprint
• A simple concatenation of the fields

• Building Algorithm: fields separated via comma, array by dash

SSLVersion,Cipher,SSLExtension,EllipticCurve,EllipticCurvePointFormat

• Example:

769,47-53-5-10-49161-49162-49171-49172-50-56-19-4,0-10-11,23-24-25,0

JA3 was successful for a few years

• Identification of implementation:
• Browser with version
• Some malwares

• JA3 to agent databases
• De facto standard for

fingerprinting
• Without decryption
• Can be used anywhere and early

• Reverse proxy
• Firewall

• Used in
• Suricata
• Wireshark
• Arkime
• Splunk
• AWS Firewall
• Azure Firewall
• Far more…

• https://github.com/salesforce
/ja3

And then something strange happened (1/3)

• Stamus Security Platform has a feature named Host Insight
• Store information about IP on the network
• Using uniquely information coming from Suricata
• Track characteristics seen on IP like

• Username
• Hostname
• HTTP user agent
• TLS agent

• TLS agent:
• JA3 correspond to an implementation
• JA3 can be mapped to a agent name

• Using existing mapping database

And then something strange happened (2/3)

And then something strange happened (3/3)

• Massive overflowing of TLS agent table
• In production

• one host was triggering 1000 JA3 per minutes
• Far more than sum of the other 10000 hosts on this network
• Strong impact on performance

• It was not making sense
• Code was unchanged
• This did suddenly appear

• What did change
• Could just be on the client itself

And the responsible is Google

• Chrome feature: https://chromestatus.com/feature/5124606246518784

https://chromestatus.com/feature/5124606246518784

Don’t be evil

• Extensions are always send in same order
• But server should not act based on this
• RFC stipulate that only the last one should be in fixed place
• Let’s randomized the extension list when sending them

• I’ve read it multiple times
• Still make no sense
• Any hint welcome

• Reminder, this is JA3:

SSLVersion,Cipher,SSLExtension list,

 EllipticCurve,EllipticCurvePointFormat

• This completely break JA3 fingerprint

Impact of the change

• One implementation has millions of ja3 fingerprints
• Can’t identify an implementation anymore

• Impact on some usages
• Keeping a list of TLS agents on an IP address

• Ending up with on agent per new TLS connection
• Per ja3 policy is dead

• Firewall, reverse proxy

• A way out for detection of malwares
• Just add a function to randomize the list
• Don’t get detected

Why this failure ?

• JA3 use implementation behavior
• RFC should be the minimum degree of freedom

• Because real life is even worst
• Server must work with client violating RFC

• Design should at least be resistant to variation in RFC scope

JA4 to the rescue (or not)

• Evolution of JA3 & more
• Developed by John Althouse
• Under FoxIO LLC umbrella

• A set of fingerprinting techniques
• TLS JA4, replacement of JA3
• JA4HTTP, JA4Latency, …

• https://github.com/FoxIO-LLC/ja4

JA4: TLS fingerprint

License

• JA4 (TLS) is BSD 3-Clause
• JA4S & the others: FoxIO License 1.1.

• not permissive for monetization
• License on an algorithm ?

A look at ja4

Take aways

• Lists are sorted so this fix the “problem” of randomization
• This lower the separation capability of the fingerprint

• ALPN: Application-Layer Protocol Negotiation
• Interesting information about the protocol

• Client proposes protocol in TLS handshake
• Usually: h2, http/1.1
• Server answer negotiated protocol

• Information on connection
• SNI
• quic/tls

Fingerprinting implementation ?

• One implementation can do
• TLS and QUIC
• Potentially SNI or not
• Propose different alpn

• One implementation has multiple ja4
• From 2 to 8 on just connection dependant information

Conclusion

• JA3 is now mostly useless
• Detection can now be easily evaded by updating implementation
• Mapping to agent can not be done

• JA4 is a nice replacement
• Adoption seems to take

Thank You!
Contact:

Web: https://www.stamus-networks.com/

Mail: el@stamus-networks.com

