
Philippe Boneff & Roger Ng Jul 2025
Google TrustFabric

Google Open Source
Security Team

Building Efficient Verifiable Logs:
Introducing Trillian Tessera and TesseraCT

Pass the SALT 2025, Lille

 Engineer @ Google Open Source Security, TrustFabric
Certificate Transparency Tech Lead

Philippe Boneff
phboneff@

Deter bad behaviour by making it discoverable.

 Engineer @ Google Open Source Security, TrustFabric

Roger Ng
rogerng@

Building Efficient Verifiable Logs:
Introducing Trillian Tessera and TesseraCT

From Certificate Transparency to Transparency

Tessera & TesseraCT

Demo

01

02

03

Premise

Problem

Requisite

User contacts a domain over HTTPS and wants to ensure they
are connected with the authentic domain owner.

Solution

User gets a certificate for this domain that proves ownership of
this domain.

How does the user know this proof of ownership is authentic?

Convince the user that domain owners would be aware of any
mis-issued certificate, and would react.

How? Policies requiring to log all TLS certificates in an append-only,
publicly accessible and verifiable data structure.

Certificate Transparency case study

Meet Merkle Trees

Append only: once you add an
entry to it, it cannot be removed
undetectably

Verifiable: using cryptographic
proofs, verifiers can check that
an entry is in the tree and that
two version of the tree are
consistent

Great. Now, log 10B certs per year, live, globally, with no corruption.

sumDB
 … all Go packages?

… all build artifacts?

… all E2EE messaging public keys?
WhatsApp iMessageProton Mail

What else?
Private computing, private information retrieval …

And maybe…

C2SP specs: common APIs

Checkpoint Witnessing Tiles Static CT API

01 02 03 04

Common tree root
representation.

Protocol protecting
against split-view
attacks by verifying
and attesting that
logs grow
consistently.

POSIX-compatible
format to serve log
data.

Scalable and
cheap to operate,
in terms of
engineering and
storage resources.

All of the previous points,
but backwards compatible
with RFC6962:

diff:

- Checkpoints
- Different paths
- Leaf format

https://c2sp.org/

N=000

N=000 N=001

Tiling a log

checkpoint

prefix/

tile/<L>/<N>[.p/<W>]
 1/
 000

entries/<N>[.p/<W>]
 000
 001

 0/
 000
 001

N

L

N=000 N=001

L=0 L=0

L=1

Open source It’s a library Philosophy APIs

Available in beta
Written in Go

Simplicity

Multi-implementation
storage

Asynchronous
integration in storage
implementation

Resilience and
availability

Write
 appender.Add($DATA)

Read
 C2SP Tiles specs
 (compatible with CT)

You embed it in your
own server

Tessera - next generation transparency log

Choose your own backend

- POSIX: you can run it locally!
- MySQL: one single SQL DB

- GCP: (Spanner + GCS)
no server on the read path

- AWS: (AuroraDB + S3)
no server on the read path

Tessera - under the hood

Performance adapted to your needs

- From 1 to 8k QPS *depends on backend and $

- Multiple, 1, (0?!) server

Tessera puts you on a safe path
 ↳ but you remain in control

Supports multiple concurrent servers
 ↳ better reliability

Antispam (deduplication), pushback
 ↳ no denial of service attack

Wait for matching index or checkpoint
 ↳ ensure entries are integrated

Integrate with witnessing
 ↳ no split view attack

opts := tessera.NewAppendOptions().
WithCheckpointSigner(signer).
WithAntispam(uint(antispamCacheSize), antispam).
WithCheckpointInterval(*checkpointInterval).
WithBatching(*batchMaxSize, *batchMaxAge).
WithPushback(*pushbackMaxOutstanding)

appender, shutdown, reader, err := tessera.NewAppender(ctx,
 driver, opts)
if err != nil {

panic(err)
}

index, err := appender.Add(ctx, tessera.NewEntry(data))()

Tessera - Flexible, but opinionated

Endpoints are different

s/data/tile: different path

get-root: CT specific read endpoint

issuer/: CT specific read endpoint

TesseraCT is a binary

TesseraCT is a binary using Tessera

All the CT logic
certificate parsing, SCTs, etc.

TesseraCT can run on
GCP, AWS (for now)

Kudos to Sunlight, Itko, Azul,
Compact logs built independently

Format is different

Checkpoint signature for
backward compatibility

Data format

TesseraCT vs Tessera

Platform
Read
APIs

Antispam
Sequencing

GCP: Spanner
AWS: AuroraDB

Write
APIs

TesseraCT
Binary

Tessera
Storage

static-ct-api submission APIs:
VM / Cloud Run / Fargate

- add-chain
- add-pre-chain
- get-roots

Data

GCP: GCS
AWS: S3

TesseraCT: infrastructure

Configured with terraform
 ↳ no admin server

Bringing a new log up takes a few
minutes
 ↳ one log = Server+DB+Bucket

Reads go to S3 and GCS directly
 ↳ decoupled form writes

TesseraCT: usability

https://transparency.dev
https://blog.transparency.dev

https://github.com/transparency-dev/tessera
https://github.com/transparency-dev/tesseract
https://c2sp.org

transparency-dev slack

rogerng@ phboneff@

Links and questions

https://transparency.dev
https://blog.transparency.dev
https://github.com/transparency-dev/tessera
https://github.com/transparency-dev/tesseract
https://c2sp.org/static-ct-api
https://join.slack.com/t/transparency-dev/shared_invite/zt-2jt6643n4-I5wLUo90_tvTVd4nfmfDug

