
Hooking Windows Named Pipes
Pass The Salt 2025

03/07/2025

Whoami

Thomas Borot
Pentester

thomas.borot@synacktiv.com

Synacktiv

French offensive security company

180 security experts

4 departments :
- Pentest / Redteam
- Reverse Engineering / Vulnerability Research
- Development
- Incident Response

Hexacon

■

■

■

■

2

Overview

Windows Named Pipes presentation and APIs

Common attacks to intercept and modify data

Common mitigations against MitM attacks

How to bypass mitigations

Demo

Injecting data into a named pipe

■

■

■

■

■

■

3

Windows Named Pipes
Bidirectional channel between a client and a server.

PS > .\pipelist64.exe

Pipe Name Instances Max Instances
--------- --------- -------------
InitShutdown 3 -1
lsass 9 -1
ntsvcs 3 -1
scerpc 3 -1
Winsock2\CatalogChangeListener-2ec-0 1 1
Winsock2\CatalogChangeListener-3e0-0 1 1
epmapper 3 -1
Winsock2\CatalogChangeListener-254-0 1 1
LSM_API_service 3 -1
Winsock2\CatalogChangeListener-1d8-0 1 1
atsvc 3 -1

4

Windows Named Pipes APIs

Server:
handle = CreateNamePipe("\\.\pipe\example_pipe") -> listen on "example_pipe"

Client:
handle = CreateFile("\\.\pipe\example_pipe") -> connects to "example_pipe"

Both:
WriteFile(handle, "hello world!") -> sends "hello world!" to the server
data = ReadFile(handle) -> reads data from the pipe

Other Windows APIs can be used to perform asynchronous read and writes
Note: Some named pipes are accessible through the network

5

Example
PS > .\pipe.exe -mode sync -servermode -pipename "example_pipe"
[INFO] CreateNamedPipeW("\\.\pipe\example_pipe", ...) -> 308
[INFO] ConnectNamedPipe(308, 0) -> 1
[INFO] New client connected
[INFO] ReadFile(308, readBuffer, 2048, pNbBytesRead, 0) -> 1
[INFO] Got data (22 bytes): "Client says tutJxQNpew"
[INFO] WriteFile(308, "Server says FSrHdjnLcr", 22, pNbBytesWritten, 0) -> 1
[INFO] Wrote 22 bytes

PS > .\pipe.exe -mode sync -pipename "example_pipe"
[INFO] CreateFileW("\\.\pipe\example_pipe", ...) -> 332
[INFO] Connected to existing pipe
[INFO] WriteFile(332, "Client says tutJxQNpew", 22, pNbBytesWritten, 0) -> 1
[INFO] Wrote 22 bytes
[INFO] ReadFile(332, readBuffer, 2048, pNbBytesRead, 0) -> 1
[INFO] Got data (22 bytes): "Server says FSrHdjnLcr"

6

ACLs

Named pipes are securable objects, their DACL can be set at creation time

PS > .\accesschk64.exe \\.\pipe\ntsvcs

\\.\pipe\ntsvcs
 RW Everybody
 RW AUTORITE NT\ANONYMOUS LOGON
 RW BUILTIN\Administrators

7

ACLs
By default when running as administrator:

PS > .\printsddl.exe "example_pipe"
D:(A;;FA;;;SY)(A;;FA;;;BA)(A;;FA;;;BA)(A;;FR;;;WD)(A;;FR;;;AN)
RW NT AUTHORITY\System
RW BUILTIN\Administrators
R Everybody
R NT AUTHORITY\ANONYMOUS LOGON

When running the server as non-administrator

PS > .\printsddl.exe "example_pipe"
D:(A;;FA;;;SY)(A;;FA;;;BA)(A;;FA;;;S-1-5-21-1687563665-1533190766-2569360332-1002)(A;;FR;;;WD)(A;;FR;;;AN)
RW NT AUTHORITY\System
RW BUILTIN\Administrators
RW DESKTOP-4NC0BMW\user
R Everybody
R NT AUTHORITY\ANONYMOUS LOGON

8

Listen for several clients
Listening to several clients implies calling CreateNamedPipe several times.
Instances are queued in a FIFO, each call to CreateFile dequeues one instance of the pipe.

9

Listen for several clients
PS > .\pipelist64.exe
Pipe Name Instances Max Instances
--------- --------- -------------
ntsvcs 4 -1

PS > .\pipe.exe -mode sync -pipename "ntsvcs"
[INFO] CreateNamedPipeW("\\.\pipe\ntsvcs", ...) -> 340
[INFO] ConnectNamedPipe(308, 0)

PS > .\pipelist64.exe
Pipe Name Instances Max Instances
--------- --------- -------------
ntsvcs 5 -1

We can listen on top of an existing pipe instances, provieded we have the appropriate permissions
(FILE_CREATE_PIPE_INSTANCE or FILE_APPEND_DATA or GENERIC_WRITE)

10

Common attacks
The Access rights of the pipes are the access rights of the first caller to CreateNamedPipe

11

Mitigations

dwOpenMode = dwOpenMode | windows.FILE_FLAG_FIRST_PIPE_INSTANCE
handle, err := windows.CreateNamedPipe(pipename, dwOpenMode, pipeMode, windows.PIPE_UNLIMITED_INSTANCES, 65536, 65536, 0, nil)

Result:

[INFO] Running server in mode "waitforsingleobject"
[INFO] CreateNamedPipe("\\.\pipe\thats_no_pipe_test", ...)
[INFO] CreateNamedPipe -> 352
[INFO] Running server in mode "waitforsingleobject"
[INFO] CreateNamedPipe("\\.\pipe\thats_no_pipe_test", ...)
[INFO] CreateNamedPipe -> 18446744073709551615, Access denied.

12

Mitigations

ACLs won't be enough if:

The client process has to run in the context of the user (e.g. chrome, MSTSC)

The server could check that:

The connecting process has a PID in an allow-list

The exe of the connecting process is signed by a specific Certificate Authority

■

■

■

13

Example

14

Bypassing mitigations

Injecting into a legitimate process at run-time (Frida)

Changing the behavior of NtReadFile and NtWriteFile (Interceptor.attach)

Use an HTTP Proxy to expose data to the security researcher (e.g. Burpsuite)

■

■

■

15

Frida 101

Process intrumentation tool. Using it in JavaScript looks like:

Interceptor.attach(Module.getExportByName(null, "NtWriteFile"), {
 onEnter: (args) => {
 const FileHandle = args[0];
 console.log(FileHandle.toInt32());
 args[0] = ptr(0x10); // Changing the Handle before the call to NtWriteFile
 },
 onLeave: (result) => {
 const NtStatus = result;
 result = ptr(0x0); // Ensure the NtWriteFile function returns STATUS_SUCCESS
 }
})

You can load this javascript snippet using Python

16

WriteFile flow

17

ReadFile flow

18

Catch 1: asynchronous reads
BOOL ReadFile(
 [in] HANDLE hFile,
 [out] LPVOID lpBuffer,
 [in] DWORD nNumberOfBytesToRead,
 [out, optional] LPDWORD lpNumberOfBytesRead,
 [in, out, optional] LPOVERLAPPED lpOverlapped
);

BOOL ReadFileEx(
 [in] HANDLE hFile,
 [out, optional] LPVOID lpBuffer,
 [in] DWORD nNumberOfBytesToRead,
 [in, out] LPOVERLAPPED lpOverlapped,
 [in] LPOVERLAPPED_COMPLETION_ROUTINE lpCompletionRoutine
);

When lpOverlapped is not NULL, the syscall returns immediately. The program has to call another
function to know when the data has been read.

19

Catch 1: asynchronous reads
typedef struct _OVERLAPPED {
 ULONG_PTR Internal;
 ULONG_PTR InternalHigh;
 union {
 struct {
 DWORD Offset;
 DWORD OffsetHigh;
 } DUMMYSTRUCTNAME;
 PVOID Pointer;
 } DUMMYUNIONNAME;
 HANDLE hEvent;
} OVERLAPPED, *LPOVERLAPPED;

The hEvent is a Synchronization object used to signal the process that something
happenned.

20

Catch 1: asynchronous reads

Developers tends to use one of these functions:

WaitForSingleObject (Ex)

WaitForMultipleObject (Ex)

GetOverlappedResult (Ex)

GetQueuedCompletionStatus (Ex)

We can maintain a list of overlapped operations that are pending for the process, when
one of these functions dequeues an overlapped operation, we intercept it.

■

■

■

■

21

Catch 1: asynchronous reads
Interceptor.attach(NtReadFileAddr, {
onEnter: function(this: NtReadFileInvocationContext, args: InvocationArguments) {
 this.FileHandle = args[0]; // [in] HANDLE
 this.Event = args[1]; // [in, optional] HANDLE
 this.ApcRoutine = args[2]; // [in, optional] PIO_APC_ROUTINE
 this.ApcContext = args[3]; // [in, optional] PVOID
 this.IoStatusBlock = args[4]; // [out] PIO_STATUS_BLOCK
 this.Buffer = args[5]; // [out] PVOID
 this.Length = args[6]; // [in] ULONG
 this.ByteOffset = args[7] // [in, optional] PLARGE_INTEGER
 this.Key = args[8] // [in, optional] PULONG

 // Check if the Handle is a NamedPipe, and if we should intercept it
 this.handlePath = getPathByHandle(this.FileHandle)
 if (!isTargetHandlePath(this.handlePath)) { this.doIntercept = false; return }

 if (this.Event.toInt32() !== 0) {
 // This is an overlapped/asynchronous operation
 // register the overlapped operation for further use in getOverlappedResult
 pushOverlappedOperation({
 pOverlapped: this.IoStatusBlock,
 pBuffer: this.Buffer,
 bufferLength: this.Length.toInt32(),
 hEvent: this.Event.toInt32(),
 handleId: this.FileHandle.toInt32(),
 handlePath: this.handlePath,
 })
 }

22

Catch 1: asynchronous reads
Interceptor.attach(getOverlappedResultAddr, {
onEnter: function(args) {
 const handle = args[0];
 const lpOverlapped = args[1];
 const nbBytesTransferred = args[2];
 const bWait = args[3];

 const handlePath = getPathByHandle(handle);

 if (!isTargetHandlePath(handlePath)) {
 // Not something we monitor, exit
 return
 }
 const overlappedOperation = popOverlappedOperationByOverlapped(lpOverlapped)

 this.lpOverlapped = lpOverlapped
 this.nbBytesTransferred = nbBytesTransferred
 this.handlePath = handlePath
 this.handleId = handle.toInt32()

 if (overlappedOperation === undefined) { return }

 // Save all context data so that we can access them after the syscall
 this.doIntercept = true
 this.lpOverlapped = lpOverlapped
 this.buffer = overlappedOperation.pBuffer
 this.nbBytesTransferred = nbBytesTransferred
 this.handlePath = handlePath
 this.handleId = handle.toInt32()
},

23

Catch 1: asynchronous reads
onLeave: function(result) {
 if (!this.doIntercept) { return }
 if (result.toInt32() === 0) { return }

 // Restore the context
 const lpOverlapped: NativePointer = this.lpOverlapped;
 const buffer: NativePointer = this.buffer;
 const bufferLength = (this.nbBytesTransferred as NativePointer).readU32();
 const handlePath: string = this.handlePath;
 const handleId: number = this.handleId;

 const identifier = sendMsg({
 funcName: "GetOverlappedResult",
 message: buffer.readByteArray(bufferLength) ?? new ArrayBuffer(0),
 id: 'to_ReadOperations',
 handlePath,
 handleId
 })
 popReadOperation({
 handleId,
 bufferLength,
 callback: (status, payload) => {
 // Handle cases
 // - Do nothing is payload is equal to initial data
 // - Overwrite buffer if payload is small enough
 // - Simulate BUFFER_TOO_SMALL errors
 }
 })
}

24

Catch 2: completion routines
BOOL ReadFileEx(
 [in] HANDLE hFile,
 [out, optional] LPVOID lpBuffer,
 [in] DWORD nNumberOfBytesToRead,
 [in, out] LPOVERLAPPED lpOverlapped,
 [in] LPOVERLAPPED_COMPLETION_ROUTINE lpCompletionRoutine
);

NTSTATUS NtReadFile(
 In HANDLE FileHandle,
 _In_opt_ HANDLE Event,
 _In_opt_ PIO_APC_ROUTINE ApcRoutine,
 _In_opt_ PVOID ApcContext,
 Out PIO_STATUS_BLOCK IoStatusBlock,
 Out PVOID Buffer,
 In ULONG Length,
 _In_opt_ PLARGE_INTEGER ByteOffset,
 _In_opt_ PULONG Key
);

When ApcRoutine is non null, ApcContext contains a pointer to an IO_COMPLETION_ROUTINE

25

Catch 2: completion routines
We need to dynamically hook this function in NtWriteFile

 if (this.ApcContext.toInt32() != 0) {
 this.isOverlapped = true
 pushOverlappedOperation({
 pOverlapped: this.IoStatusBlock,
 pBuffer: this.Buffer,
 bufferLength: this.Length.toInt32(),
 hEvent: this.Event.toInt32(),
 handleId: this.FileHandle.toInt32(),
 handlePath: this.handlePath,
 })
 if (!isHooked(this.ApcContext)) {
 Interceptor.attach(this.ApcContext, {
 onEnter: completionRoutineOnEnter,
 onLeave: completionRoutineOnLeave,
 })
 attachedFunctions.push(this.ApcContext.toInt32())
 }
 }

26

Demo time

27

Making the repeater work (WIP)

Sending a websocket message to the server corresponds to a WriteFile operation.

Retrieve the handle (from the path of the websocket)

Check if a WriteFile operation is pending (so that we do not block the process)

If none are pending, call directly WriteFile from Frida

(Check the data has been correctly written)

■

■

■

■

28

Making the repeater work (WIP)

29

Making the repeater work (WIP)

30

Making the repeater work (WIP)

Sending a websocket message to the client corresponds to a ReadFile operation.
This is more tricky because we need to wait for the legitimate process to call ReadFile.

Maintain a queue of data to be read by the client

When a ReadFile operation is dequeued by the legitimate process, intercept the
buffer, then check for data in the queue corresponding to the named pipe handle

When NtReadFile is called, check if there is already data in the queue. If yes,
dequeues data and cancels the underlying syscall. Return immediately the dequeued
data.

■

■

■

31

Conclusion

Carefully review all CreateNamePipe options, especially ACLs and
FILE_FLAG_FIRST_INSTANCE

Send sensitive data to pipe clients only if you trust all processes in the client's
context

Consider data sent through named pipe as untrusted inputs, even after
authentication of the client

■

■

■

32

https://github.com/synacktiv/thats_no_pipe

https://github.com/synacktiv/thats_no_pipe

