= SYN

Hooking Windows Named Pipes

Pass The Salt 2025
03/07/2025

Whoami £ SYNACKTIV

Synacktiv

= French offensive security company

p—
GG = 180 security experts
= 4 departments :

- Pentest / Redteam

Thomas Borot - Reverse Engineering / Vulnerability Research
Pentester - Development
thomas.borot@synacktiv.com - Incident Response
= Hexacon

overview B SYNACKTIV

= Windows Named Pipes presentation and APls
= Common attacks to intercept and modify data
= Common mitigations against MitM attacks

= How to bypass mitigations

= Demo

= |njecting data into a named pipe

Windows Named Pipes HSYNACKTIV

Bidirectional channel between a client and a server.

PS > .\pipelist64.exe

Pipe Name Instances Max Instances
InitShutdown 3 -1
lsass 9 -1
ntsvcs 3 -1
scerpc 3 -1
Winsock2\CatalogChangeListener-2ec-0 1 1
Winsock2\CatalogChangeListener-3e0-0 1 1
epmapper 3 -1
Winsock2\CatalogChangeListener-254-0 1 1
LSM_API_service 3 -1
Winsock2\CatalogChangelListener-1d8-0 1 1
atsvc 5 -1

Windows Named Pipes APIS ESYNACKTIV

Server:

handle = CreateNamePipe("\\.\pipe\example_pipe") -> listen on "example pipe"
Client:

handle = CreateFile("\\.\pipe\example_pipe") -> connects to "example pipe"
Both:

WriteFile(handle, "hello world!") -> sends "hello world!" to the server

data = ReadFile(handle) -> reads data from the pipe

Other Windows APIs can be used to perform asynchronous read and writes
Note: Some named pipes are accessible through the network

Example BSYNACKTIV

PS > .\plpe.exe -mode sync -servermode -pipename "example_pipe"

[INFO] CreateNamedPipeW("\\.\pipe\example_pipe", ...) -> 308

[INFO] ConnectNamedPipe(308, 0) -> 1

[INFO] New client connected

[INFO] ReadFile(308, readBuffer, 2048, pNbBytesRead, 0) -> 1

[INFO] Got data (22 bytes): "Client says tutJxQNpew"

[INFO] WriteFile(308, "Server says FSrHdjnLcr", 22, pNbBytesWritten, 0) -> 1
[INFO] Wrote 22 bytes

PS > .\plipe.exe -mode sync -pipename "example_pipe"

[INFO] CreateFileW("\\.\pipelexample_pipe", ...) -> 332

[INFO] Connected to existing pipe

[INFO] WriteFile(332, "Client says tutJxQNpew'", 22, pNbBytesWritten, 0) -> 1
[INFO] Wrote 22 bytes

[INFO] ReadFile(332, readBuffer, 2048, pNbBytesRead, 0) -> 1

[INFO] Got data (22 bytes): "Server says FSrHdjnLcr"

AELS = SYNACKTIV

Named pipes are securable objects, their DACL can be set at creation time

PS > .\accesschk64.exe \\.\pipe\ntsvcs

\\.\pipe\ntsvcs
RW Everybody
RW AUTORITE NT\ANONYMOUS LOGON
RW BUILTIN\Administrators

AELS = SYNACKTIV

By default when running as administrator:

PS > .\printsddl.exe "example_pipe"
D:(A;;FA;;;SY)(A;;FA;;;BA)(A;FA;;BA)(A;;FR;; ;WD) (A;;FR;;;AN)
RW NT AUTHORITY\System

RW BUILTIN\Administrators

R Everybody

R NT AUTHORITY\ANONYMOUS LOGON

When running the server as non-administrator

PS > .\printsddl.exe "example_pipe"
D:(A;;FA;;;SY)(A;;FA;;;BA)(A;;FA;;;S-1-5-21-1687563665-1533190766-2569360332-1002) (A; ;FR;; ;WD) (A;;FR;;;AN)
RW NT AUTHORITY\System

RW BUILTIN\Administrators

RW DESKTOP-4NCOBMW\user

R Everybody

R NT AUTHORITY\ANONYMOUS LOGON

Listen for several clients HSYNACKTIV

Listening to several clients implies calling CreateNamedPipe several times.
Instances are queued in a FIFO, each call to CreateFile dequeues one instance of the pipe.

NamedPipe "example_pipe"

1 - CreateNamedPipe D E— 3 - CreateFile

2 - CreateNamedPipe DB E— 4 - CreateFile

Listen for several clients HSYNACKTIV

PS > .\pipelist64.exe
Pipe Name Instances Max Instances

ntsvcs 4 -1

PS > .\pipe.exe -mode sync -pipename "ntsvcs"
[INFO] CreateNamedPipeW("\\.\pipe\ntsvcs", ...) -> 340
[INFO] ConnectNamedPipe(308, 0)

PS > .\pipelist64.exe
Pipe Name Instances Max Instances

ntsvcs) -1

We can listen on top of an existing pipe instances, provieded we have the appropriate permissions
(FILE_CREATE_PIPE_INSTANCE or FILE_ APPEND_DATA or GENERIC WRITE)

10

Common attacks

= SYNACKTIV

The Access rights of the pipes are the access rights of the first caller to CreateNamedPipe

Legitimate Client

pipe instances

CreateFile—»

Legitimate Server

n

Mitigations B SYNACKTIV

dwOpenMode =
handle, err

Result:

[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]

Mode Meaning
FILE_FLAG_FIRST_PIPE_INSTAMCE If you attempt to create multiple instances of a pipe with this flag, creation of
Ox00080000 the first instance succeeds, but creation of the next instance fails with

ERROR_ACCESS_DEMIED.

dwOpenMode | windows.FILE_FLAG_FIRST_PIPE_INSTANCE

:= windows.CreateNamedPipe(pipename, dwOpenMode, pipeMode, windows.PIPE_UNLIMITED_INSTANCES, 65536, 65536, 0, nil)

Running server in mode "walitforsingleobject"”
CreateNamedPipe("\\.\pipe\thats_no_pipe_test", ...)
CreateNamedPipe -> 352

Running server in mode "walitforsingleobject"
CreateNamedPipe("\\.\pipe\thats_no_pipe_test", ...)
CreateNamedPipe -> 18446744073709551615, Access denied.

12

Mitigations B SYNACKTIV

ACLs won't be enough If:
= The client process has to run in the context of the user (e.g. chrome, MSTSC)
The server could check that:

= The connecting process has a PID in an allow-list

= The exe of the connecting process is signed by a specific Certificate Authority

13

Example

Server Client

Checks the Signature and pin CA

>
Verified you can talk

>

Sends XML data

—
Parses XML (injan insecure way?)

XML Response

>
Server Client

= SYNACKTIV

14

Bypassing mitigations £ SYNACKTIV

= |njecting into a legitimate process at run-time (Frida)
= Changing the behavior of NtReadFile and NtWriteFile (Interceptor.attach)

= Use an HTTP Proxy to expose data to the security researcher (e.g. Burpsuite)

Frida 101 = SYNACKTIV

Process intrumentation tool. Using it in JavaScript looks like:

Interceptor.attach(Module.getExportByName(null, "NtWriteFile"), {
onEnter: (args) => {
const FileHandle = args[0];
console. log(FileHandle.toInt32());
args[0] = ptr(0x10); // Changing the Handle before the call to NtWriteFile
1y
onLeave: (result) => {
const NtStatus = result;
result = ptr(0x0); // Ensure the NtWriteFile function returns STATUS_SUCCESS

}
1)

You can load this javascript snippet using Python

WriteFile flow

LegitimateClient

<<

Frida
Calls WriteFile
>_
<
Changes WriteFile parameters
Frida

LegitimateClient

Python HTTP Proxy (burp)
>
websocket
>
websocket
«
Python HTTP Proxy (burp)

= SYNACKTIV

17

ReadFile flow

= SYNACKTIV

LegitimateClient Windows Frida
Calls ReadFile
Returns >H
«
Calls frida hook before processing
>_
¢
Changes ReadFile returned data
«
LegitimateClient Windows Frida

Python HTTP Proxy (burp)
>
websocket
>
websocket
<
Python HTTP Proxy (burp)

18

Catch 1: asynchronous reads £ SYNACKTIV

BOOL ReadFile(

[in] HANDLE hFile,

[out] LPVOID LpBuffer,

[in] DWORD nNumberOfBytesToRead,
[out, optional] LPDWORD LpNumberOfBytesRead,

[in, out, optional] LPOVERLAPPED 1lpOver lapped
)i

BOOL ReadFileEXx(

[in] HANDLE hFile,

[out, optional] LPVOID lpBuffer,

[in] DWORD NNumberOfBytesToRead,
[in, out] LPOVERLAPPED lpOver lapped,

[in] LPOVERLAPPED_COMPLETION_ROUTINE 1pCompletionRoutine

);

When IpOverlapped is not NULL, the syscall returns immediately. The program has to call another
function to know when the data has been read.

Catch 1: asynchronous reads

typedef struct _OVERLAPPED {
ULONG_PTR Internal;
ULONG_PTR InternalHigh;
union {
struct {
DWORD Offset;
DWORD OffsetHigh;
} DUMMYSTRUCTNAME;
PVOID Pointer;
} DUMMYUNIONNAME;
HANDLE hEvent;
} OVERLAPPED, *LPOVERLAPPED;

= SYNACKTIV

The hEvent is a Synchronization object used to signal the process that something

happenned.

20

Catch 1: asynchronous reads £ SYNACKTIV

Developers tends to use one of these functions:

= WaitForSingleObject (Ex)
= WaitForMultipleObject (Ex)

= GetOverlappedResult (Ex)
= GetQueuedCompletionStatus (Ex)

We can maintain a list of overlapped operations that are pending for the process, when
one of these functions dequeues an overlapped operation, we intercept it.

21

Catch 1: asynchronous reads £ SYNACKTIV

Interceptor.attach(NtReadFileAddr, {

onEnter: function(this: NtReadFileInvocationContext, args: InvocationArguments) {
this.FileHandle = args[@]; // [in] HANDLE
this.Event = args[1]; // [in, optional] HANDLE
this.ApcRoutine = args[2]; // [in, optional] PIO_APC_ROUTINE
this.ApcContext = args[3]; // [in, optional] PVOID
this.IoStatusBlock = args[4]; // [out] PIO_STATUS_BLOCK
this.Buffer = args[5]; // [out] PVOID
this.Length = args[6]; // [in] ULONG
this.ByteOffset = args[7] // [in, optional] PLARGE_INTEGER
this.Key = args[8] // [in, optional] PULONG

// Check if the Handle is a NamedPipe, and if we should intercept it
this.handlePath = getPathByHandle(this.FileHandle)
if (!isTargetHandlePath(this.handlePath)) { this.doIntercept = false; return }

if (this.Event.toInt32() !== 0) {
// This is an overlapped/asynchronous operation
// register the overlapped operation for further use in getOverlappedResult
pushOver lappedOperation({
poverlapped: this.IoStatusBlock,
pBuffer: this.Buffer,
bufferLength: this.Length.toInt32(),
hEvent: this.Event.toInt32(),
handleId: this.FileHandle.toInt32(),
handlePath: this.handlePath,

1)

22

Catch 1: asynchronous reads

Interceptor.attach(getOverlappedResultAddr, {

onEnter:

iy

const
const
const
const

const

if (!
//
ret

}

const

this.
this.
this.
this.

if (overlappedOperation === undefined) { return }

// Save all context data so that we can access them after the syscall

this.
this.
this.
this.
this
this.

function(args) {

handle = args[0];

lpOver lapped = args[1];
nbBytesTransferred = args[2];
bwait = args[3];

handlePath = getPathByHandle(handle);
isTargetHandlePath(handlePath)) {

Not something we monitor, exit
urn

over lappedOperation = popOver lappedOperationByOver lapped(lpOver lapped)

1lpOverlapped = 1pOverlapped
nbBytesTransferred = nbBytesTransferred
handlePath = handlePath

handleId = handle.toInt32()

doIntercept = true

1pover lapped = 1pOver lapped

buffer = overlappedOperation.pBuffer
nbBytesTransferred = nbBytesTransferred

.handlePath = handlePath

handleId = handle.toInt32()

= SYNACKTIV

23

Catch 1: asynchronous reads £ SYNACKTIV

onLeave: function(result) {
if (!this.doIntercept) { return }
if (result.toInt32() === 0) { return }

// Restore the context

const 1pOverlapped: NativePointer = this.lpOver lapped;

const buffer: NativePointer = this.buffer;

const bufferLength = (this.nbBytesTransferred as NativePointer).readu32();
const handlePath: string = this.handlePath;

const handlelId: number = this.handleld;

const identifier = sendMsg({
funcName: "GetOver lappedResult",
message: buffer.readByteArray(bufferLength) ?? new ArrayBuffer(0),
id: 'to_ReadOperations',
handlePath,
handleId

)

popReadOperation({
handleld,
bufferLength,
callback: (status, payload) => {

// Handle cases

// - Do nothing is payload is equal to initial data
// - Overwrite buffer if payload is small enough
// - Simulate BUFFER_TOO_SMALL errors

b
1)

24

Catch 2: completion routines #SYNACKTIV

BOOL ReadFileEx(

[in] HANDLE hFile,

[out, optional] LPVOID lpBuffer,

[in] DWORD NNumberOfBytesToRead,
[in, out] LPOVERLAPPED lpOver lapped,

[in] LPOVERLAPPED_COMPLETION_ROUTINE 1pCompletionRoutine

);

NTSTATUS NtReadFile(

In HANDLE FileHandle,
_In_opt_ HANDLE Event,
_In_opt_ PIO_APC_ROUTINE ApcRoutine,
_In_opt_ PVOID ApcContext,
Out PIO_STATUS_BLOCK IoStatusBlock,
Out PVOID Buffer,

In ULONG Length,
_In_opt_ PLARGE_INTEGER ByteOffset,
_In_opt_ PULONG Key

)

When ApcRoutine is non null, ApcContext contains a pointer to an IO_COMPLETION_ROUTINE

25

Catch 2: completion routines

We need to dynamically hook this function in NtWriteFile

if (this.ApcContext.toInt32() !'= 0) {
this.isOverlapped = true
pushOver lappedOperation({
pOver lapped: this.IoStatusBlock,
pBuffer: this.Buffer,
bufferLength: this.Length.toInt32(),
hEvent: this.Event.toInt32(),
handleId: this.FileHandle.toInt32(),
handlePath: this.handlePath,
1)
if (!isHooked(this.ApcContext)) {
Interceptor.attach(this.ApcContext, {
onEnter: completionRoutineOnEnter,
onLeave: completionRoutineOnlLeave,

})

attachedFunctions.push(this.ApcContext.toInt32())

}
}

= SYNACKTIV

26

Demo time

= SYNACKTIV

21

Making the repeater work (WIP) HSYNACKTIV

Sending a websocket message to the server corresponds to a WriteFile operation.

= Retrieve the handle (from the path of the websocket)
= Check if a WriteFile operation is pending (so that we do not block the process)
= |f none are pending, call directly WriteFile from Frida

= (Check the data has been correctly written)

28

Making the repeater work (WIP)

Client Process

ReadFile

-

= SYNACKTIV

Server Process

writeFile

-\'|

Kernel Queue

)
e
J

29

Making the repeater work (WIP) HSYNACKTIV

Client Process ThatsNePipe Queue \1 Server Process

- J

ReadFile Kernel Queue
_j Goes,
'E‘—' t:r'-r’l::u.a-l". -
websocket
before ~—

\. J

writeFile

30

Making the repeater work (WIP) HSYNACKTIV

Sending a websocket message to the client corresponds to a ReadFile operation.
This is more tricky because we need to wait for the legitimate process to call ReadFile.

= Maintain a queue of data to be read by the client

= When a ReadFile operation is dequeued by the legitimate process, intercept the
buffer, then check for data in the queue corresponding to the named pipe handle

= When NtReadFile is called, check if there is already data in the queue. If yes,
dequeues data and cancels the underlying syscall. Return immediately the dequeued

data.

31

Conclusion £ SYNACKTIV

= Carefully review all CreateNamePipe options, especially ACLs and
FILE FLAG_FIRST _INSTANCE

= Send sensitive data to pipe clients only if you trust all processes in the client's
context

= Consider data sent through named pipe as untrusted inputs, even after
authentication of the client

32

= SYN

https://github.com/synacktiv/thats_no_pipe

https://github.com/synacktiv/thats_no_pipe

