
Putting pacman in jail: a
sandboxing story

Rémi Gacogne, Security Team, Arch Linux
Pass the SALT 2025, July 3rd, 2025

Plan

What is pacman?

Why does pacman need a sandbox?

Sandboxing in practice

Downfall

Conclusion

What is pacman1 already?

Package manager used by Arch Linux and derivatives.

This is not a talk about the video game, sorry!

Although you can technically use pacman on the Steam Deck!

1https://gitlab.archlinux.org/pacman/pacman/

https://gitlab.archlinux.org/pacman/pacman/

What does it do?2

$ sudo pacman -Syu
:: Synchronizing package databases...
core 116,3 KiB 969 KiB/s 00:00 [------------] 100%
extra 4,7 MiB 4,45 MiB/s 00:00 [-------c o] 59%

2using the “secret” ILoveCandy option

What does it do?

Attack surface

pacman:

I is written in a memory-unsafe language, C
I uses libraries written in memory-unsage languages
I runs as root
I performs complicated tasks involving untrusted content

Attack surface: untrusted content

Privilege separation

Great news!

So, great news, we can sandbox the parts dealing with
untrusted content!

I create a new process
I switch to an unprivileged user
I (ideally restrict system calls, filesystem accesses)
I perform the operation dealing with untrusted content
I report back to the initial process
I ?
I profit!

Restricting system calls

Unfortunately Linux does not have an easy way to restrict what
a program can do, like OpenBSD’s pledge.
What we have is seccomp, which makes it easy to allow/deny
specific system call numbers, but involves a fair amount of work
to do fine-grained filtering.
Listing allowed system calls is safer, but might break on libc or
libcurl upgrades.

Restricting system calls with seccomp

1 const char *denied_syscalls[] = {
2 "kcmp",
3 "lookup_dcookie",
4 "perf_event_open",
5 "pidfd_getfd",
6 "ptrace",
7 [...]
8 };
9 scmp_filter_ctx ctx = seccomp_init(SCMP_ACT_ALLOW);

10 size_t idx;
11 for(idx = 0; idx < sizeof(denied_syscalls) / sizeof(*denied_syscalls); idx++) {
12 int syscall = seccomp_syscall_resolve_name(denied_syscalls[idx]);
13 seccomp_rule_add(ctx, SCMP_ACT_ERRNO(EPERM), syscall, 0);
14 }
15 seccomp_load(ctx);
16 seccomp_release(ctx);

Restricting filesystem access

Landlock3 is a stackable LSM that enables restriction of
ambient rights (filesystem or network access).
We can for example use it to mark the whole filesystem as
read-only, except for a temporary download directory.

3https://landlock.io/

https://landlock.io/

Restricting filesystem access with Landlock

1 struct landlock_ruleset_attr ruleset_attr = {
2 .handled_access_fs = \
3 _LANDLOCK_ACCESS_FS_READ | \
4 _LANDLOCK_ACCESS_FS_WRITE | \
5 _LANDLOCK_ACCESS_FS_REFER | \
6 _LANDLOCK_ACCESS_FS_TRUNCATE | \
7 LANDLOCK_ACCESS_FS_EXECUTE,
8 };
9 struct landlock_path_beneath_attr path_beneath = {

10 .allowed_access = _LANDLOCK_ACCESS_FS_READ,
11 };
12 int abi = landlock_create_ruleset(NULL, 0, LANDLOCK_CREATE_RULESET_VERSION);
13 int ruleset_fd = landlock_create_ruleset(&ruleset_attr, sizeof(ruleset_attr), 0);
14
15 /* allow / as read-only */
16 path_beneath.parent_fd = open("/", O_PATH | O_CLOEXEC | O_DIRECTORY);
17 path_beneath.allowed_access = _LANDLOCK_ACCESS_FS_READ;
18 landlock_add_rule(ruleset_fd, LANDLOCK_RULE_PATH_BENEATH, &path_beneath, 0);
19 close(path_beneath.parent_fd);
20
21 /* allow read-write access to the directory passed as parameter */
22 path_beneath.parent_fd = open(path, O_PATH | O_CLOEXEC | O_DIRECTORY);
23 path_beneath.allowed_access = _LANDLOCK_ACCESS_FS_READ | _LANDLOCK_ACCESS_FS_WRITE |
24 _LANDLOCK_ACCESS_FS_TRUNCATE;
25
26 /* make sure allowed_access is a subset of handled_access_fs, which may change for older landlock ABI */
27 path_beneath.allowed_access &= ruleset_attr.handled_access_fs;
28
29 landlock_add_rule(ruleset_fd, LANDLOCK_RULE_PATH_BENEATH, &path_beneath, 0);
30 landlock_restrict_self(ruleset_fd, 0);
31
32 close(path_beneath.parent_fd);
33 close(ruleset_fd);

How hard could it be?

After a few days of coding, I had a working patch!

I create a new process via fork
I switch to an unprivileged user
I restrict system calls via seccomp
I restrict filesystem access via Landlock
I download files to a specific directory
I report back to the initial process via its exit status code

The proof of concept

Submitting the proof of concept

I August 30th, 2021: [pacman-dev] [PATCH] Add optional
sandboxing when downloading files

I September 2nd: Positive feedback from Andrew and Allan
(but please split this into several patches, remove seccomp
and Landlock for now)

I September 5th: second version

Well, crap

Andrew:
“After thinking about this some more, I think this is far too
simple. Just running download_internal in an unprivileged fork
will break anything that relies on side effects.
download_internal sets pm_errno, tracks server errors, and
calls a number of front-end callbacks. Losing server error
tracking across multiple downloads isn’t a big deal, but losing
pm_errno is significant and we have no way of knowing what
kind of state changes the front-end callbacks might be making.
I suspect this would massively break GUI front-ends.”

The bad: explanation

It turns out I had missed a very important point: pretty much
all my changes are in libalpm, which is a library used not only
by pacman, but also by other frontends like paru4.
They rely on callbacks to interact with libalpm, and some of
these are now executed in the unprivileged process, which is not
good.

Back to the drawing board.

4https://github.com/morganamilo/paru

https://github.com/morganamilo/paru

The bad: solution

So we need to pass information back to the parent process: let’s
set up a pipe.

On October 10th, third version of the patch:

I intercept the callbacks raised in the child process
I serialize them
I send the serialized data over a pipe
I deserialize and process callbacks in the parent process

The bad: solution

Serializing data

I log event: format the string, send the type, level, the
length of string then the string itself

I download event: send the type, event, associated struct,
filename length then filename

The bad: another privileged parser

The bad news is that we are adding a new parser in a privileged
process:

I very simple format
I easy to audit, less than 50 lines of code
I behind a first line of defense

And then we wait

I And then.. nothing happened until August 2022, because
both Allan and I were very busy with other projects

I pacman development moved to Arch Linux’s gitlab, which
made things a lot easier for me

I in November, Allan opened a merge request5 for the
sandboxing

I still a few issues to fix

5https:
//gitlab.archlinux.org/pacman/pacman/-/merge_requests/23

https://gitlab.archlinux.org/pacman/pacman/-/merge_requests/23
https://gitlab.archlinux.org/pacman/pacman/-/merge_requests/23

Issue 1

Signals were not properly handled in the child, which inherited
signal handlers from the parent.

Issue 2

Too much information to pass via the exit status, we settled on
passing less information and relying on the presence and state
of downloaded files.

Issue 3

Regression with resuming interrupted downloads, because we
could not find them in the next run without knowing their
temporary, random names.

Dealing with temporary files

I create a new, temporary download directory via mkdtemp,
owned by the unprivileged user

I move any leftover files from a previously interrupted
download to that directory

I in the unprivileged child, download files to the temporary
directory

I change ownership of successfully downloaded files to root
I move them to the final cache directory
I remove the temporary directory and anything left in it

Dealing with temporary files

Finally

I April 1st, 2024 (not an April’s fool!): it got merged!
I April 5th: Landlock support6

I June 17th: Syscall filtering via seccomp 7

I July 14th: pacman 7.0.0 released “Liechtenstein and
Uzbekistan are doubly landlocked”

6https:
//gitlab.archlinux.org/pacman/pacman/-/merge_requests/167

7https:
//gitlab.archlinux.org/pacman/pacman/-/merge_requests/196

https://gitlab.archlinux.org/pacman/pacman/-/merge_requests/167
https://gitlab.archlinux.org/pacman/pacman/-/merge_requests/167
https://gitlab.archlinux.org/pacman/pacman/-/merge_requests/196
https://gitlab.archlinux.org/pacman/pacman/-/merge_requests/196

Reminder: before

$ sudo pacman -Syu
:: Synchronizing package databases...
core 116,3 KiB 969 KiB/s 00:00 [------------] 100%
extra 4,7 MiB 4,45 MiB/s 00:00 [-------c o] 59%

After

$ sudo pacman -Syu
:: Synchronizing package databases...
core 116,3 KiB 969 KiB/s 00:00 [------------] 100%
extra 4,7 MiB 4,45 MiB/s 00:00 [-------c o] 59%

Mission accomplished!

Profit! .. right?

Downfall

What do you think actually happened?

I regression: unable to download sync database as a user
since 7.08

I Sandbox breaks libfakeroot 9

I Landlock is not supported by the kernel! 10

I pacman 7.0.0 Landlock issue in systemd-nspawn containers
11

I Sandboxed dirs seem to interfere with download
resumption12

8https://gitlab.archlinux.org/pacman/pacman/-/issues/182
9https://gitlab.archlinux.org/pacman/pacman/-/issues/186

10https://gitlab.archlinux.org/pacman/pacman/-/issues/190
11https://gitlab.archlinux.org/pacman/pacman/-/issues/195
12https://gitlab.archlinux.org/pacman/pacman/-/issues/209

https://gitlab.archlinux.org/pacman/pacman/-/issues/182
https://gitlab.archlinux.org/pacman/pacman/-/issues/186
https://gitlab.archlinux.org/pacman/pacman/-/issues/190
https://gitlab.archlinux.org/pacman/pacman/-/issues/195
https://gitlab.archlinux.org/pacman/pacman/-/issues/209

Summary

I A few unhappy users, but we had workarounds
I Most users are unaware of the change: well done!
I And they are a bit safer today
I Nice side-effect: we managed to get Landlock support

enabled in more places!

Next steps

I Sandbox signature verification
I Restrict more syscalls (in particuliar prevent forking while

allowing new threads)
I Prevent read access to most of the filesystem

Key takeaway

I sandboxing an existing piece of code is hard, we always
underestimate the pain

I you will break some workflows, plan for it: communicate,
make it possible to opt-out, be ready to fix what you broke

I if you are writing software in 2025, please design for
privilege separation early in the process!13

I do not mistake the maintainer being busy for lack of
interest

13yes, some people are working on re-implementing at least parts of
libalpm in Rust: https://github.com/archlinux/alpm

https://github.com/archlinux/alpm

Powered by LATEX, based on a theme by kaszkowiak.eu

Thank you! / Questions?

	What is pacman?
	Why does pacman need a sandbox?
	Sandboxing in practice
	Downfall
	Conclusion

