Fun with flags: How Compilers Break and Fix Constant-Time
Code

Antoine Geimer
July 3st, 2025

Background: side-channels

Definition
Side-channels are side-effects in a program’s execution that can leak information

Background: side-channels

Definition
Side-channels are side-effects in a program’s execution that can leak information

Controller

Rikomagic MK802 IV SDR receiver
L(m]) antenna “m:‘j “
Power
MicroSD card b bibat
WiFi
Antenna tuning capacitor % A N L
Hardware attacks uarch attacks
— physical access — co-located attacker

Example: RSA decryption

time cache accesses — get key — profit!

°
°
400 +
° °
° e o [° +

= o+ L] ° ° ® e & y
©
o
3 300
£ > o o 16 g * 00 i gl o
5] g+ + ° P W +
o * ++ o + °
£ +o® * + + ¥ 4
=200 44+ + + PR it o 4 +t.
g o HTTHF ® + @ [y Threshold
&

oy 1 o s e “wwbﬁ&wnmwbmﬁm-«

® multiply
+ square
oA
2000 3000 4000 5000 6000 7000 8000 9000

Time slot number

Example: RSA decryption

time cache accesses — get key — profit!

200 A

g
2 1501
>
9
p=l
a
2]
o
£ 100 —— ——
=
@
8 1 1 1
&
50
@ multiply
+ square
04
11000 11500 12000 12500 13000 13500 14000

Time slot number

Constant-time programming

e Hardware cause: components shared between processes
— unlikely to be fixed

Constant-time programming

e Hardware cause: components shared between processes
— unlikely to be fixed

e Software countermeasure: constant-time programming

e Ensuring the microarchitectural state is independent of secret values

Constant-time programming

e Hardware cause: components shared between processes
— unlikely to be fixed
e Software countermeasure: constant-time programming
e Ensuring the microarchitectural state is independent of secret values

Basically: no secret-dependent branch or memory accesses

Constant-time in practice’

Example in Kyber:

void poly_frommsg(intl6_t r[SIZE], uint8_t msg[32]) {
intl16_t mask;

for (int i = 0; i<SIZE/8; i++) {
for (int j = 0; j<8; j++) {
if ((msglil >> j) & 1)
r[8xi+j] = CONSTANT;
else
r[8*xi+j] = 0;

TFrom Antoon Purnal: https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/hqbtIGFKIpU

https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/hqbtIGFKIpU

Constant-time in practice’

Example in Kyber:

void poly_frommsg(intl6_t r[SIZE], uint8_t msg[32]) {
intl16_t mask;

for (int i = 0; i<SIZE/8; i++) {
for (int j = 0; j<8; j++) {
if ((msglil >> j) & 1)
r[8xi+j] = CONSTANT;
else not CT!
r[8*xi+j] = 0;

TFrom Antoon Purnal: https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/hqbtIGFKIpU

https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/hqbtIGFKIpU

Constant-time in practice?

Example in Kyber:

void poly_frommsg(intl16_t r[SIZE], uint8_t msg[32]) {
intl16_t mask;

for (int i = 0; i<SIZE/8; i++) {
for (int j = 0; j<8; j++) {
mask = -(int16_t) ((msgli]l >> j) & 1); // bitmask arithmetic
r[8xi+j] = mask & CONSTANT;

} & Csource: CT

2From Antoon Purnal: https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/hqbtIGFKIpU

https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/hqbtIGFKIpU

Constant-time vs compilers: example (2)

Compiled with LLVM:

Xor s
.outer:
xor
.inner:
movzx , ptr [it]
xor A
bt
jae .skip
mov , CONSTANT
.skip:
8 [oood
jne .inner

§ loood

jne .outer

>

Constant-time vs compilers: example (2)

Compiled with LLVM:

Xor ,
.outer:
Xor s

.inner:
movzx , ptr [+]
xor
bt 5
jae .skip
mov , CONSTANT
.skip:
;[]
jne .inner
8 Hoood

jne .outer

3

— secret-dependent branch

Constant-time vs compil

Compiled with LLVM:

Xor
.outer:

Xor
.inner:

>

3

movzx , ptr [+

xor

bt 5

jae .skip

mov , CONSTANT
.skip:

8 loood
jne .inner
8 Hoood

jne .outer

3

— secret-dependent branch

Compiled with GCC:

mov

.outer:
mov

.inner:
movzx
sar
and
neg
and
mov

jne

jne

, O

, ptr []

, CONSTANT
ptr [rdi+rcx=*2],

..

.inner

-

.outer

Constant-time vs compilers: example (2)

Compiled with LLVM: Compiled with GCC:
Xor , mov , O
.outer: .outer:
Xor , mov , 0
.inner: .inner:
movzx , ptr [+] movzx , ptr []
Xor 5 sar 5
bt . and , 1
jae .skip neg
mov , CONSTANT and , CONSTANT
.skip: mov ptr [+ *2] ,
;[] ;[]
jne .inner jne .inner
; [...] ; [0]
jne .outer jne .outer

— secret-dependent branch — still CT

Related work

Known problem... but few studies:
e either limited to short snippets or older i386 programs?
e or providing only quantitative insights*?

3Laurent Simon et al. “What You Get Is What You C: Controlling Side Effects in Mainstream C Compilers”. In: EuroS&P. 2018.
“Moritz Schneider et al. Breaking Bad: How Compilers Break Constant-Time-Implementations. 2024.
5Lukas Gerlach et al. “Do Compilers Break Constant-time Guarantees?” In: FC. 2025.

Related work

Known problem... but few studies:
e either limited to short snippets or older i386 programs?
e or providing only quantitative insights*?
— lacking qualitative studies

How do compilers break CT guarantees?

3Laurent Simon et al. “What You Get Is What You C: Controlling Side Effects in Mainstream C Compilers”. In: EuroS&P. 2018.
“Moritz Schneider et al. Breaking Bad: How Compilers Break Constant-Time-Implementations. 2024.
5Lukas Gerlach et al. “Do Compilers Break Constant-time Guarantees?” In: FC. 2025.

Research questions

RQs:

RQ1 How can we detect compiler-introduced CT leakages?
RQ2 Which compiler optimizations introduce them?
RQ3 Can we prevent such leakages while preserving performance?

Research questions

RQs:

RQ1 How can we detect compiler-introduced CT leakages?
RQ2 Which compiler optimizations introduce them?
RQ3 Can we prevent such leakages while preserving performance?

Contributions

e Simple methodology to detect such bugs using Microwalk
e Analysis of how optimization passes interact to break CT
e Evaluation of a simple defense: disabling such optimizations

Challenge: lack of ground truth

A two-fold problem:

binary CT violations

Challenge: lack of ground truth

A two-fold problem:

binary CT violations

source CT violations

Challenge: lack of ground truth

A two-fold problem:

binary CT violations , , . . .
Potential solution: only analyze verified libraries

— risks limiting experiment’s scope
— developers often use non-verified libraries

source CT violations

Challenge: lack of ground truth

A two-fold problem:

binary CT violations , , . . .
Potential solution: only analyze verified libraries

— risks limiting experiment’s scope
— developers often use non-verified libraries

..or apply manual filtering?
— done in Schneider et al.
— risks missing leakages

— thwarted by function inlining
source CT violations

Our approach: differential testing

Our approach: differential testing

CT? cr?

resultg

Our approach: differential testing

NS /b@ i
goé\Q /@f@
CT? cT?
resultA} {7&?} {resultg

compiler-introduced CT violations

Our approach: differential testing

Choosing the right metric for comparison:

@ @ — Schneider et al.: % of vuln. binaries

— number vulnerable instructions:
impacted by inlining and loop unrolling
CT? CT?

resulty } { #7 } { resultg

compiler-introduced CT violations

Our approach: differential testing

®‘§\\® ’b@/_@f
< ¢ Choosing the right metric for comparison:
@ @ — Schneider et al. : % of vuln. binaries
— number vulnerable instructions:
impacted by inlining and loop unrolling
cre cr? — solution: compare source code lines
— we use DWARF debugging symbols
resulty } { #7 } { resultg

compiler-introduced CT violations

Implementation

NS 0;0_
&(V &, Source benchmarks
@ @ MbedTLS and BearSSL from previous works
Compilers
LLVM 12/18 and GCC 9/13, 03 and Os
CT? cT?
CT detection
resulty } {yé?} { resultg Dynamic approach: Microwalk

compiler-introduced CT violations

LLVM O3 GCC 03

Binaries vi2 v18 | v9 V13
RSA-mbedtls (PKCS) 47 47 | 52 48 v
RSA-mbedtls (OAEP) | 46 48 A | 49 49
ECDSA-mbedtls 60 64 A | 61 62 A

RSA-bearssl (OAEP) 0O 1a| O 0
ECDSA-bearssl 0 14| O 0
poly_frommsg 0 14| O 0
jump_threading 0 0| 1 1
loop_unswitching 1 11 1 1
path_splitting 0 0| 1 1

LLVM O3 GCC 03

Binaries vi2 v18 | v9 V13
RSA-mbedtls (PKCS) 47 47 | 52 48 v
RSA-mbedtls (OAEP) | 46 48 A | 49 49
ECDSA-mbedtls 60 64 A | 61 62 A

— LLVM: general increase in
newer versions

RSA-bearssl (OAEP) 0O 1a| O 0
ECDSA-bearssl 0 14| O 0
poly_frommsg 0 14| O 0
jump_threading 0 0| 1 1
loop_unswitching 1 11 1 1
path_splitting 0 0| 1 1

LLVM O3 GCC O3
Binaries vi2 v18 | v V13
RSA-mbedtls (PKCS) 47 47 | 52 48V
RSA-mbedtls (OAEP) | 46 48 A | 49 49
ECDSA-mbedtls 60 64 A | 61 62 A
RSA-bearssl (OAEP) 0O 1a| O 0
ECDSA-bearssl 0 1A O 0
poly_frommsg 0 14| O 0
jump_threading 0 0| 1 1
loop_unswitching 1 11 1 1
path_splitting 0 0| 1 1

— LLVM: general increase in
newer versions

— not so much for GCC
— both compilers can break CT

Pass analysis (1)

We analyzed the detected CT violations using Compiler Explorer:
— OptPipeline tool allows us to isolate problematic passes
— GCC and LLVM break CT in different ways: code patterns and optimizations
— Limitation: manual analysis

Pass analysis (2)

Different pathways to breaking CT...

Pass analysis (2)

Different pathways to breaking CT...

in LLVM:
Bitmask arithmetic
InstCombine

optimizations

IR select

X86 cmov X86 jmp

Pass analysis (2)

Different pathways to breaking CT...

in LLVM:

Bitmask arithmetic

InstCombine
optimizations
IR select
X86 cmov X86 jmp

in GCC:

Ternary expression

optimizations

GIMPLE if

IfConversion

X86 cmov x86 jmp

Example: RSA-bearssl in LLVM (1)

Goal: perform a CT array access for windowed RSA modular exponentiation

for (int u = 1; u < N; u++) {
uint32_t m;

m = -EQ(u, secret);

for (int v = 1; v < M; v++) {
t2[v] |= m & baselv];

}

base += M;

}

C source

Example: RSA-bearssl in LLVM (1)

Goal: perform a CT array access for windowed RSA modular exponentiation

for (int u =
uint32_t m;

1; u < N; u++) {

m = -EQ(u, secret);

for (int v = 1; v < M; v++) {
t2[v] |= m & baselv];

}

base += M;

}

C source

for (int u = 1; u < N; u++) {
uint32_t m;

m = (u == secret);

for (int v = 1; v < M; v++) {
t2[v] |= select(m, baselv], 0);

}

base += M;

}

LLVM IR (represented as C for clarity)

Example: RSA-bearssl in LLVM (2)

This transformation by itself is safe...

for (int u = 1; u < N; u++) {
uint32_t m;

m = (u == secret);

for (int v = 1; v < M; v++) {
t2[v] |= select(m, basel[v], 0);

}

base += M;

Example: RSA-bearssl in LLVM (2)

This transformation by itself is safe... but allows further unsafe optimizations!

for (int u = 1; u < N; u++) { for (int u = 1; u < k; u++) {
uint32_t m; uint32_t m;
m = (u == secret); m = (u == secret);
for (int v = 1; v < M; v++) { if (m) {
t2[v] |= select(m, basel[v], 0); for (int v = 1; v < M; v++) {
} LoopUnswitch t2[v] |= baselv];
base += M; }
} }

base += M;

}

Example: RSA-bearssl in LLVM (2)

This transformation by itself is safe... but allows further unsafe optimizations!

for (int u = 1; u < N; u++) { for (int u = 1; u < k; u++) {

uint32_t m; uint32_t m;

m = (u == secret); m = (u == secret);
for (int v = 1; v < M; v++) { for (int v = 1; v < M; v++) {
t2[v] |= select(m, basel[v], 0); ___—’//,»if (m) {
+ CmovConversion t2[v]l |= baselv];
base += M;
} }

base += M;

}

Mitigations

We investigate a simple mitigation: disabling problematic optimizations
— using (sometimes undocumented) compiler flags
— GCC: we disable loop unswitching, jump threading and path splitting
— LLVM: we disable loop unswitching, loop vectorization and cmov conversion

Mitigations

We investigate a simple mitigation: disabling problematic optimizations
— using (sometimes undocumented) compiler flags
— GCC: we disable loop unswitching, jump threading and path splitting
— LLVM: we disable loop unswitching, loop vectorization and cmov conversion

Evaluation

— effectiveness: rerun our benchmarks compiled with the mitigating flags
— performance: reusing the libraries’ existing performance benchmarks

LLVM O3 GCC O3

1tio?
. g No Yes | No Yes
Binaries
RSA-mbedtls (PKCS) 47 46V | 48 50 A
RSA-mbedtls (OAEP) | 48 46V | 49 49

ECDSA-mbedtls 64 61V | 62 62

RSA-bearssl (OAEP) 1 0V 0 0
ECDSA-bearssl 1 O0v 0 0
poly_frommsg 1T 0v 0 0
jump_threading 0 0 1T 0v
loop_unswitching 1 0v 1 0v
path_splitting 0 0 1T 0v

LLVM O3 GCC O3

. _— No Yes | No Yes
Binaries e Decrease in vulnerability
RSA-mbedtls (PKCS) | 47 46 v | 48 50 A . .
RSA-mbedtls (OAEP) | 48 46w | 49 49| CTbinaries remain CT
ECDSA-mbedtls 64 61V | 62 62
RSA-bearssl (OAEP) 1 0V 0 0
ECDSA-bearssl 1 0v 0 0
poly_frommsg 1T 0v 0 0
jump_threading 0 0 1T 0v
loop_unswitching 1 0v 1 0v
path_splitting 0 0 1T 0v

LLVM O3 GCC O3

. = No Yes | No Yes
Binaries e Decrease in vulnerability
RSA-mbedtls (PKCS) | 47 46V | 48 50 A o ,
RSA-mbedtls (OAEP) | 48 46w | 49 49 | ® CTDbinariesremain CT
ECDSA-mbedtls 64 61V | 62 62 » Negligible performance
RSA-bearssL(OAEP) | 1 OV | 0 0 TiRREIE!
ECDSA-bearssl 1 0ov| 0 0 - B%a£§;“<[§ﬁ?% (Ge),

—U. 0

MM IR R e T
loop_unswitching 1 0v 1 0v -
path_splitting 0 0 1T 0v

Future work

Our work has some limitations:
e benchmarks restricted to a few primitives
e optimization pipeline analysis is still manual

6Zhiyuan Zhang and Gilles Barthe. CT-LLVM: Automatic Large-Scale Constant-Time Analysis. 2025. URL: https://eprint .iacr.org/2025/338.
20

https://eprint.iacr.org/2025/338

Future work

Our work has some limitations:
e benchmarks restricted to a few primitives
e optimization pipeline analysis is still manual
— our list of problematic passes is incomplete

6Zhiyuan Zhang and Gilles Barthe. CT-LLVM: Automatic Large-Scale Constant-Time Analysis. 2025. URL: https://eprint .iacr.org/2025/338.
20

https://eprint.iacr.org/2025/338

Future work

Our work has some limitations:
e benchmarks restricted to a few primitives
e optimization pipeline analysis is still manual
— our list of problematic passes is incomplete

Possible solution: applying an IR-level detection tool between each pass
e CT-LLVM®: not yet open-source

6Zhiyuan Zhang and Gilles Barthe. CT-LLVM: Automatic Large-Scale Constant-Time Analysis. 2025. URL: https://eprint .iacr.org/2025/338.
20

https://eprint.iacr.org/2025/338

Future work

Our work has some limitations:
e benchmarks restricted to a few primitives
e optimization pipeline analysis is still manual
— our list of problematic passes is incomplete

Possible solution: applying an IR-level detection tool between each pass
e CT-LLVM®: not yet open-source
e RQ: how do we generalize this to various LLVM backends?
e RQ: what about GCC?

6Zhiyuan Zhang and Gilles Barthe. CT-LLVM: Automatic Large-Scale Constant-Time Analysis. 2025. URL: https://eprint .iacr.org/2025/338.
20

https://eprint.iacr.org/2025/338

Conclusion

We conducted a qualitative study of compiler-introduced CT violations:
e we introduced a simple detection methodolody based on differential testing
e we found multiple optimizations susceptible to break CT
e we suggest a simple and readily-deployable mitigation: just disabling them!

e we show this approach prevent the leakage we detected, with minimal
overhead

21

https://github.com/ageimer/fun-with-flags

Conclusion

We conducted a qualitative study of compiler-introduced CT violations:
e we introduced a simple detection methodolody based on differential testing
e we found multiple optimizations susceptible to break CT
e we suggest a simple and readily-deployable mitigation: just disabling them!

e we show this approach prevent the leakage we detected, with minimal
overhead

Artifact repo: https://github.com/ageimer/fun-with-flags

21

https://github.com/ageimer/fun-with-flags

