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Background: side-channels

Definition
Side-channels are side-effects in a program’s execution that can leak information

Hardware attacks
→ physical access

uarch attacks
→ co-located attacker
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Example: RSA decryption

time cache accesses→ get key→ profit!

Threshold
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Example: RSA decryption

time cache accesses→ get key→ profit!
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Constant-time programming

• Hardware cause: components shared between processes
→ unlikely to be fixed

• Software countermeasure: constant-time programming
• Ensuring the microarchitectural state is independent of secret values

Basically: no secret-dependent branch or memory accesses
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Constant-time in practice1

Example in Kyber:

void poly_frommsg(int16_t r[SIZE], uint8_t msg[32]) {
int16_t mask;

for (int i = 0; i<SIZE/8; i++) {
for (int j = 0; j<8; j++) {

if ((msg[i] >> j) & 1)
r[8*i+j] = CONSTANT;

else
r[8*i+j] = 0;

}
}

}

1From Antoon Purnal: https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/hqbtIGFKIpU
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Constant-time in practice1

Example in Kyber:

void poly_frommsg(int16_t r[SIZE], uint8_t msg[32]) {
int16_t mask;

for (int i = 0; i<SIZE/8; i++) {
for (int j = 0; j<8; j++) {

if ((msg[i] >> j) & 1)
r[8*i+j] = CONSTANT;

else
r[8*i+j] = 0;

}
}

}

not CT!

1From Antoon Purnal: https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/hqbtIGFKIpU
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Constant-time in practice2

Example in Kyber:

void poly_frommsg(int16_t r[SIZE], uint8_t msg[32]) {
int16_t mask;

for (int i = 0; i<SIZE/8; i++) {
for (int j = 0; j<8; j++) {

mask = -(int16_t)((msg[i] >> j) & 1); // bitmask arithmetic
r[8*i+j] = mask & CONSTANT;

}
}

}

C source: CT

2From Antoon Purnal: https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/hqbtIGFKIpU
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Constant-time vs compilers: example (2)

Compiled with LLVM:
xor eax, eax

.outer:
xor ecx, ecx

.inner:
movzx r8d, ptr [rsi+rax]
xor edx, edx
bt r8d, ecx
jae .skip
mov edx, CONSTANT

.skip:
; [...]
jne .inner
; [...]
jne .outer
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.inner:
movzx r8d, ptr [rsi+rax]
xor edx, edx
bt r8d, ecx
jae .skip
mov edx, CONSTANT

.skip:
; [...]
jne .inner
; [...]
jne .outer

→ secret-dependent branch

Compiled with GCC:
mov edx, 0

.outer:
mov ecx, 0

.inner:
movzx eax, ptr [rsi]
sar eax, cl
and eax, 1
neg eax
and ax, CONSTANT
mov ptr [rdi+rcx*2], ax
; [...]
jne .inner
; [...]
jne .outer
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Constant-time vs compilers: example (2)

Compiled with LLVM:
xor eax, eax

.outer:
xor ecx, ecx

.inner:
movzx r8d, ptr [rsi+rax]
xor edx, edx
bt r8d, ecx
jae .skip
mov edx, CONSTANT

.skip:
; [...]
jne .inner
; [...]
jne .outer

→ secret-dependent branch

Compiled with GCC:
mov edx, 0

.outer:
mov ecx, 0

.inner:
movzx eax, ptr [rsi]
sar eax, cl
and eax, 1
neg eax
and ax, CONSTANT
mov ptr [rdi+rcx*2], ax
; [...]
jne .inner
; [...]
jne .outer

→ still CT
7



Related work

Known problem... but few studies:
• either limited to short snippets or older i386 programs3

• or providing only quantitative insights45

→ lacking qualitative studies

How do compilers break CT guarantees?

3Laurent Simon et al. “What You Get Is What You C: Controlling Side Effects in Mainstream C Compilers”. In: EuroS&P. 2018.
4Moritz Schneider et al. Breaking Bad: How Compilers Break Constant-Time~Implementations. 2024.
5Lukas Gerlach et al. “Do Compilers Break Constant-time Guarantees?” In: FC. 2025.
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Research questions

RQs:

RQ1 How can we detect compiler-introduced CT leakages?
RQ2 Which compiler optimizations introduce them?
RQ3 Can we prevent such leakages while preserving performance?

Contributions

• Simple methodology to detect such bugs using Microwalk
• Analysis of how optimization passes interact to break CT
• Evaluation of a simple defense: disabling such optimizations
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Challenge: lack of ground truth

A two-fold problem:

binary CT violations

source CT violations

Potential solution: only analyze verified libraries
→ risks limiting experiment’s scope
→ developers often use non-verified libraries

...or apply manual filtering?
→ done in Schneider et al.
→ risks missing leakages
→ thwarted by function inlining
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Our approach: differential testing

co
mp
ile
r A

compiler B

Choosing the right metric for comparison:
→ Schneider et al. : % of vuln. binaries
→ number vulnerable instructions:

impacted by inlining and loop unrolling
→ solution: compare source code lines
→ we use DWARF debugging symbols
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Implementation

co
mp
ile
r A

compiler B

resultA resultB

CT? CT?

6=?

compiler-introduced CT violations

Source benchmarks
MbedTLS and BearSSL from previous works

Compilers

LLVM 12/18 and GCC 9/13, O3 and Os

CT detection
Dynamic approach: Microwalk
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Results

LLVM O3 GCC O3
Binaries v12 v18 v9 v13
RSA-mbedtls (PKCS) 47 47 52 48 H
RSA-mbedtls (OAEP) 46 48 N 49 49
ECDSA-mbedtls 60 64 N 61 62 N
RSA-bearssl (OAEP) 0 1 N 0 0
ECDSA-bearssl 0 1 N 0 0
poly_frommsg 0 1 N 0 0
jump_threading 0 0 1 1
loop_unswitching 1 1 1 1
path_splitting 0 0 1 1

→ LLVM: general increase in
newer versions

→ not so much for GCC
→ both compilers can break CT
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Pass analysis (1)

We analyzed the detected CT violations using Compiler Explorer:
→ OptPipeline tool allows us to isolate problematic passes
→ GCC and LLVM break CT in different ways: code patterns and optimizations
→ Limitation: manual analysis
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Pass analysis (2)

Different pathways to breaking CT...

in LLVM:

Bitmask arithmetic

IR select

x86 cmov x86 jmp

InstCombine

optimizations

in GCC:

Ternary expression

GIMPLE if

x86 cmov x86 jmp

IfConversion

optimizations
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Example: RSA-bearssl in LLVM (1)

Goal: perform a CT array access for windowed RSA modular exponentiation

for (int u = 1; u < N; u++) {
uint32_t m;

m = -EQ(u, secret);
for (int v = 1; v < M; v++) {

t2[v] |= m & base[v];
}
base += M;

}

C source
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Example: RSA-bearssl in LLVM (1)

Goal: perform a CT array access for windowed RSA modular exponentiation

for (int u = 1; u < N; u++) {
uint32_t m;

m = -EQ(u, secret);
for (int v = 1; v < M; v++) {

t2[v] |= m & base[v];
}
base += M;

}

C source

for (int u = 1; u < N; u++) {
uint32_t m;

m = (u == secret);
for (int v = 1; v < M; v++) {

t2[v] |= select(m, base[v], 0);
}
base += M;

}

LLVM IR (represented as C for clarity)

Inlining

InstCombine
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Example: RSA-bearssl in LLVM (2)

This transformation by itself is safe...

for (int u = 1; u < N; u++) {
uint32_t m;

m = (u == secret);
for (int v = 1; v < M; v++) {

t2[v] |= select(m, base[v], 0);
}
base += M;

}
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Example: RSA-bearssl in LLVM (2)

This transformation by itself is safe... but allows further unsafe optimizations!

for (int u = 1; u < N; u++) {
uint32_t m;

m = (u == secret);
for (int v = 1; v < M; v++) {

t2[v] |= select(m, base[v], 0);
}
base += M;

}

for (int u = 1; u < k; u++) {
uint32_t m;

m = (u == secret);
if (m) {

for (int v = 1; v < M; v++) {
t2[v] |= base[v];

}
}
base += M;

}

LoopUnswitch

17



Example: RSA-bearssl in LLVM (2)

This transformation by itself is safe... but allows further unsafe optimizations!

for (int u = 1; u < N; u++) {
uint32_t m;

m = (u == secret);
for (int v = 1; v < M; v++) {

t2[v] |= select(m, base[v], 0);
}
base += M;

}

for (int u = 1; u < k; u++) {
uint32_t m;

m = (u == secret);
for (int v = 1; v < M; v++) {

if (m) {
t2[v] |= base[v];

}
}
base += M;

}

CmovConversion
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Mitigations

We investigate a simple mitigation: disabling problematic optimizations
→ using (sometimes undocumented) compiler flags
→ GCC: we disable loop unswitching, jump threading and path splitting
→ LLVM: we disable loop unswitching, loop vectorization and cmov conversion

Evaluation

→ effectiveness: rerun our benchmarks compiled with the mitigating flags
→ performance: reusing the libraries’ existing performance benchmarks
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Results

LLVM O3 GCC O3

Binaries
Mitig.? No Yes No Yes

RSA-mbedtls (PKCS) 47 46 H 48 50 N
RSA-mbedtls (OAEP) 48 46 H 49 49
ECDSA-mbedtls 64 61 H 62 62
RSA-bearssl (OAEP) 1 0 H 0 0
ECDSA-bearssl 1 0 H 0 0
poly_frommsg 1 0 H 0 0
jump_threading 0 0 1 0 H
loop_unswitching 1 0 H 1 0 H
path_splitting 0 0 1 0 H

• Decrease in vulnerability
• CT binaries remain CT
• Negligible performance
impact
→ BearSSL: −3.30% (GCC),

−0.43% (LLVM)
→ MbedTLS: −0.71% (GCC),

−1.14% (LLVM)
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Future work

Our work has some limitations:
• benchmarks restricted to a few primitives
• optimization pipeline analysis is still manual

→ our list of problematic passes is incomplete

Possible solution: applying an IR-level detection tool between each pass
• CT-LLVM6: not yet open-source
• RQ: how do we generalize this to various LLVM backends?
• RQ: what about GCC?

6Zhiyuan Zhang and Gilles Barthe. CT-LLVM: Automatic Large-Scale Constant-Time Analysis. 2025. url: https://eprint.iacr.org/2025/338.
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Conclusion

We conducted a qualitative study of compiler-introduced CT violations:
• we introduced a simple detection methodolody based on differential testing
• we found multiple optimizations susceptible to break CT
• we suggest a simple and readily-deployable mitigation: just disabling them!
• we show this approach prevent the leakage we detected, with minimal
overhead

Artifact repo: https://github.com/ageimer/fun-with-flags
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