Security Basics	Side-Channel Attacks	RISC-V attack	Gem5 Analysis	HPCs	ML
000	00000	000000	0000	00000	0000000

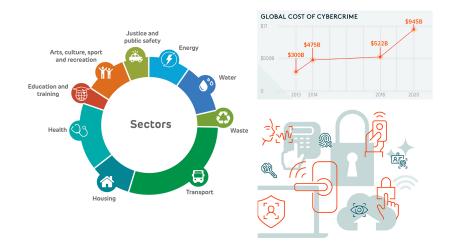
A gem5-Based Simulation Platform for Evaluating RISC-V Security Against Microarchitectural Side-Channel Attacks

Mahreen KHAN

Telecom Paris, Institut Polytechnique de Paris

Security Basics	Side-Channel Attacks	RISC-V attack	Gem5 Analysis	HPCs	ML
000	00000	000000	0000	00000	0000000
Agenda of	f Presentation	l			

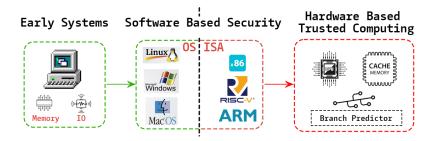
RISC-V attack



Security Basics	Side-Channel Attacks	RISC-V attack	Gem5 Analysis	HPCs	ML
●00	00000	000000	0000	00000	0000000

Security Basics

Information Security Perspective


Security Basics	Side-Channel Attacks	RISC-V attack	Gem5 Analysis	HPCs	ML
O●O	00000	000000	0000	00000	0000000
Why Secu	rity Matters	?			

https://www.visualcapitalist.com/sp/thematic-investing-3-key-trends-in-cybersecurity/

Security Basics	Side-Channel Attacks	RISC-V attack	Gem5 Analysis	HPCs	ML
00●	00000	000000	0000	00000	0000000
Secure S	oftware: Can	data still h	a laskad?		

icancu:

- Consider CPU as a black box
- Assume no bugs in software

Can data still be leaked?

Yes - Through hardware vulnerabilities and side channel attacks

Security Basics	Side-Channel Attacks	RISC-V attack	Gem5 Analysis	HPCs	ML
000	●0000	000000	0000	00000	0000000

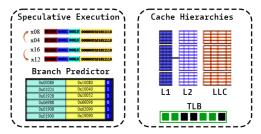
Side-Channel Attacks

Focus on Micro-architectural Side-Channels

Security Basics	Side-Channel Attacks	RISC-V attack	Gem5 Analysis	HPCs	ML
000	O●000	000000	0000	00000	0000000
Side-Cha	nnel: Major S	Security Co	ncern		

Side Channel Attacks

Side channel information can be collected from the physical behavior of a system and exploited by attackers to extract sensitive data.


Different types of Side-channels

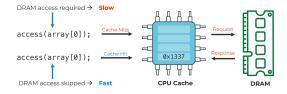
Focus for this presentation:

Microarchitectural timing side-channel attacks

Security Basics	Side-Channel Attacks	RISC-V attack	Gem5 Analysis	HPCs	ML
000	00●00	000000	0000	00000	0000000
Understar	nding Microa	rchitecture			

- Performance optimization elements:
 - Speculative execution
 - Cache hierarchies
 - Branch prediction

Typical CPU microarchitecture components


Security Basics	Side-Channel Attacks	RISC-V attack	Gem5 Analysis	HPCs	ML
000	000●0	000000	0000	00000	0000000
Cache O	ptimization				

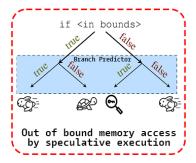
Benefits:

- Reduces memory latency (10-100x shorter than DRAM)
- Improves power efficiency

Risks:

- Creates timing side-channels
- Leaks access patterns
- Reveals cryptographic secrets

Famous Attack: Flush+Reload



Benefits:

Improves pipeline utilization

Risks:

Out of bound memory access

Famous attack: Spectre

Security Basics	Side-Channel Attacks	RISC-V attack	Gem5 Analysis	HPCs	ML
000	00000	000000	0000	00000	0000000
000	00000		0000	00000	0000000

RISC-V attack

Focus on Flush+Fault attack on RISC-V

Security Basics	Side-Channel Attacks	RISC-V attack	Gem5 Analysis	HPCs	ML
000	00000	0●0000	0000	00000	0000000
RISC-V: E	merging Arc	hitecture			

Why RISC-V Matters

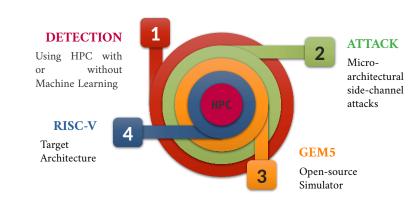
62.4 billion RISC-V cores forecast by 2026 (Market projection across IoT, AI and security-sensitive domains)

Security Basics	Side-Channel Attacks	RISC-V attack	Gem5 Analysis	HPCs	ML
000	00000	00●000	0000	00000	0000000
RISC-V: (Challenges				

A lot of work is done to understand Intel x86 and ARM vulnerabilities.

BUT what about RISC-V?

RISC-V Challenges: Critical Gap


- Less mature RISC-V security analysis
- Custom extension security
- Verification complexity

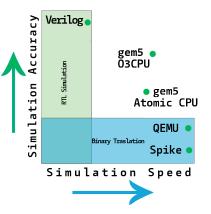
Security Basics	Side-Channel Attacks	RISC-V attack	Gem5 Analysis	HPCs	ML
000	00000	000€00	0000	00000	0000000
RISC-V: \	/irtual Securi	ty Testing	Platform		

Bridging the Gap

- Open-source virtual platform for RISC-V security research
- Enables testing of microarchitectural attacks and defenses
- Prototypes Hardware Performance Counters (HPCs) for security use

I will focus on the analysis of the **Flush+Fault** attack on RISC-V. A similar methodology was applied to the **Evict+Spec+Time** attack.

- Flush the instruction cache using fence.i.
- Record a precise timestamp immediately after the flush.
- Triggers a fault or a return by jump to a victim instruction.
- Record second timestamp after the fault or return.
- Calculate the time delta between both timestamps:
 - Shorter time indicates a cache hit.
 - Longer time indicates a cache miss.
- To avoid speculative prefetching, the attacker issues multiple calls to dummy locations outside the targeted cache line.

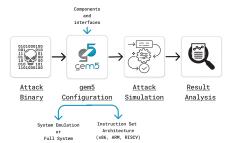

000 00000 00000 0000 0000 000	Security Basics	Side-Channel Attacks	RISC-V attack	Gem5 Analysis	HPCs	
				0000 ·		

Gem5 Analysis

Flush+Fault analysis using Gem5

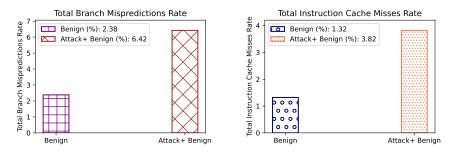
Tool Comparison

- ✓ gem5: Full-system, cycle-accurate but moderate speed
- QEMU: Fast emulation but less accurate
- Spike: ISA simulator but no timing accuracy
- Verilog Simulators: Highly accurate but very slow.


Security Basics	Side-Channel Attacks	RISC-V attack	Gem5 Analysis	HPCs	ML
000	00000	000000	00€0	00000	0000000
Gem5 sim	ulator: a too	I for secur	ity analysis		

Why Choose gem5?

• Full-system simulation


• Rich microarchitectural stats

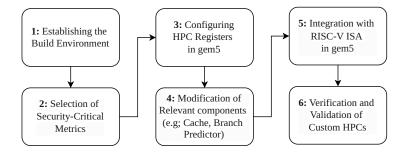
Attack Analysis using gem5

Security Basics 000	Side-Channel Attacks 00000	RISC-V attack 000000	Gem5 Analysis 000●	HPCs 00000	ML 0000000
Gem5 Ar	alysis Results	5			

Tested **Flush+Fault** which exploits instruction cache flushing and branch mispredictions.

Security Basics	Side-Channel Attacks	RISC-V attack	Gem5 Analysis	HPCs	ML
000	00000	000000	0000	●0000	0000000

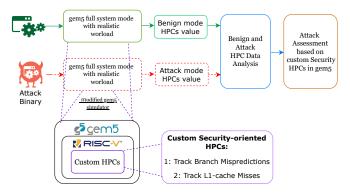
Hardware Performance Counters (HPCs) Custom HPCs within Gem5


Security Basics	Side-Channel Attacks	RISC-V attack	Gem5 Analysis	HPCs	ML
000	00000	000000	0000	O●OOO	0000000
Custom	HPCs in gem	5 · Motivat	tion		

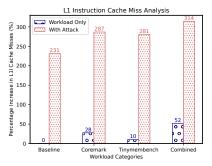
Why Custom HPCs (Security-Centric)?

- gem5 currently does not have HPCs for observing cache or branch predictor misses. The metrics are important for detecting/analyzing microarchitectural side channel attacks.
- Need to create a gem5-based virtual platform with custom HPCs for branch misprediction, cache misses etc.
- Useful for attack detection. close to a real hardware scenario.

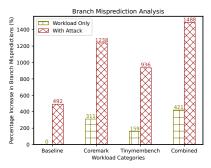
Security Basics	Side-Channel Attacks	RISC-V attack	Gem5 Analysis	HPCs	ML
000	00000	000000	0000	00●00	0000000
<u> </u>		· · –			


Creating Custom HPCs in gem5

Workflow for creating custom HPCs into gem5.



A novel framework developed for attack assessment that uses gem5-based custom HPC for RISC-V security analysis.



Security Basics	Side-Channel Attacks	RISC-V attack	Gem5 Analysis	HPCs	ML
000	00000	000000	0000	0000●	0000000
LDC An	alveie Deculte	Across Mar	ious Morlel	aada	

HPC Analysis Results Across Various Workloads

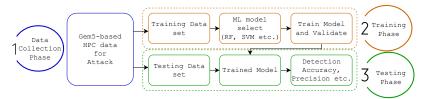
L1 instruction cache miss analysis across various workloads (with and without Flush+Fault attack) using gem5-simulated HPCs.

Branch misprediction analysis across various workloads (with and without Flush+Fault attack) using gem5-simulated HPCs.

Security Basics	Side-Channel Attacks	RISC-V attack	Gem5 Analysis	HPCs	ML
000	00000	000000	0000	00000	•000000

Machine Learning (ML)

ML for attack detection


Security Basics	Side-Channel Attacks	RISC-V attack	Gem5 Analysis	HPCs	ML
000	00000	000000	0000	00000	0000000
Mativat	ion: MI for Si	do Channa	Dotoction		

otivation. ME for Side-Channel Detection

Why ML with gem5-based HPC traces?

- ML can learn attack vs. benign patterns automatically
- Enables virtual platform-based detection before hardware implementation
- Supports rapid prototyping of detection models

Security Basics Side-Channel Attacks RISC-V attack Gem5 Analysis HPCs O0000 ML 000000 MC 00000 ML 000000 MC 00000 ML 000000 MC 00000 ML 0000000 MC 00000 ML 0000000 MC 00000 MC 00000

Methodology for HPC trace generation and ML-based detection using gem5.

Security Basics	Side-Channel Attacks	RISC-V attack	Gem5 Analysis	HPCs	ML
000	00000	000000	0000	00000	0000000
ML-Based	Attack Dete	ction: Resu	lts		

Evaluation Metrics:

- Accuracy: Proportion of correct predictions out of all predictions.
- **Precision:** Proportion of predicted attacks that were actual attacks.
- **Recall:** Proportion of actual attacks that were correctly predicted.

Model	Accuracy	Precision	Recall
RF	0.99	0.99	0.99
SVM	0.96	0.95	0.97
NB	0.95	0.92	0.96

Security Basics	Side-Channel Attacks	RISC-V attack	Gem5 Analysis	HPCs	ML
000	00000	000000	0000	00000	0000●00
Publicati	ons				

- Paper accepted at SECRYPT 2025, Spain: "Assessing Security RISC: Analyzing Flush+Fault Attack on RISC-V using gem5"
- Paper accepted at EICC 2025, France: "Evaluating KASLR Break on RISC-V using gem5"
- Paper accepted at IOLTS 2025, Italy: "Detection using gem5 and Machine Learning: A Case Study on Fault-based Attacks in RISC-V"
- Paper accepted at SAMOS 2025, Greece: "Prototyping Custom Hardware Performance Counters in gem5 Simulator: A Framework for RISC-V Side-Channel Attack Assessment"
- Paper accepted at IEEE CSR HACS 2025, Greece: "SpectreShield: Design and Analysis of Spectre Countermeasures on RISC-V Using gem5"
- Paper accepted at 28th Euromicro Conference Series on Digital System Design (DSD), Italy: "Evict+Spec+Time on RISC-V: Gem5-Based Implementation and Microarchitectural Analysis"

Security Basics 000	Side-Channel Attacks	RISC-V attack 000000	Gem5 Analysis 0000	HPCs 00000	ML 00000●0
Future V	Vork				

Goal

Build a flexible RISC-V platform to evaluate microarchitectural attacks and defenses.

Wide Attack Coverage

 ${\scriptsize \bigcirc}~$ Support for cache attacks, speculative execution, branch prediction, and TLB-based side channels

ML-Based Detection Techniques

 ${\ensuremath{\, \bullet \, }}$ Use gem5 statistics for selecting HPCs to train models for detecting attack patterns in execution traces

O Countermeasure Evaluation

- Implement and test branch predictor partitioning, cache isolation, and locking
- Measure effectiveness and performance trade-offs

Security Basics	Side-Channel Attacks	RISC-V attack	Gem5 Analysis	HPCs	ML
000	00000	000000	0000	00000	000000●
Question	answers				

Thank You!

Contact: mahreen.khan@telecom-paris.fr