
Vadim Kurland
vadim@fwbuilder.org

http://www.fwbuilder.org

Firewall Builder

mailto:vadim@fwbuilder.org
mailto:vadim@fwbuilder.org
http://www.fwbuilder.org
http://www.fwbuilder.org

Challenges of firewall
configuration

 complexity leads to errors

 coordinated changes on many devices are hard

 multi-vendor environments make the job even
harder

 Many different kinds of devices - many different configurations

 Transition from one platform to another requires complete reconfiguration

 Creates configuration (iptables script, pf or pix
configs)

 Currently supports iptables, ipfilter, pf, ipfw and
Cisco IOS ACL and Cisco ASA (PIX)

 Administrator works with an abstract firewall
rather than specific firewall implementation

What is Firewall
Builder

There are many enterprise tools that manage configs, do audits, pushes etc. None of them help
write configs in the first place.

 Uses object oriented approach to the firewall
policy design

 Designed to support complex firewall
configurations

 Can control multiple firewalls from a single
management workstation

 Has built-in policy installer

 Has built-in revision control

What is Firewall
Builder

 Identify common principles of configuration
languages and generalize

 If target device does not support a feature, emulate

Model of the Firewall

 A blend of features of iptables, PF and other

 always “first match”

 NAT before policy rules

Firewall Created by
Firewall Builder

policy and NAT are sets of standardized rules
“implied deny” - empty policy blocks everything
“first match” rule set
Use stateful rules if supported by target fw
object groups can be used in all rule elements
association of policy rules with interfaces is optional
NAT is done before policy rules
can use interfaces with dynamic address in rules via emulation if not supported natively (iptables)

 Built-in “sanity checks” are aware of target
platform limitations

 misconfigurations of interfaces, addresses, netmasks

 Illegal and conflicting policy and NAT rules

 "rule shadowing"

Detecting Errors

Invalid addresses and netmasks

Invalid rules:
• MAC matching
• NAT: can’t translate tcp service into udp

Interfaces in the GUI don’t match real fw machine

Design and
Implementation

API

GUI Command
line tools

compiler
for

iptables

compiler
for

ipfilter

compiler
for
pf

compiler
for

ipfw

compiler
for
PIX

compiler
for

IOS ACL

GUI

Example 1

NAT

Policy

 Simple DNAT rule, access to the server “hostA” for two protocols: ftp and smtp

 Access from outside using address of interface “outside”

 Policy rule to permit ftp, smtp to the server

iptables

$IPTABLES -t nat -A PREROUTING -p tcp -m tcp -m multiport \
 -d 192.0.2.1 --dports 21,25 \
 -j DNAT --to-destination 172.16.22.100

$IPTABLES -A FORWARD -i eth0 -p tcp -m tcp -m multiport \
 -d 172.16.22.100 --dports 21,25 -m state --state NEW \
 -j ACCEPT

PF

rdr on en0 proto tcp from any to 192.0.2.1 port 21 -> \
 172.16.22.100 port 21
rdr on en0 proto tcp from any to 192.0.2.1 port 25 -> \
 172.16.22.100 port 25

pass in quick on en0 inet proto tcp \
 from any to 172.16.22.100 port { 21, 25 }

PIXclass-map inspection_default
 match default-inspection-traffic

policy-map global_policy
 class inspection_default
 inspect ftp
 inspect esmtp

service-policy global_policy global

! Rule 0 (ethernet0)
!
access-list outside_acl_in remark 0 (ethernet0)
access-list outside_acl_in permit tcp any host 192.0.2.1 eq 21
access-list outside_acl_in permit tcp any host 192.0.2.1 eq 25

access-group outside_acl_in in interface outside

! Rule 0 (NAT)
!
access-list id7036X25321.0 permit tcp host 172.16.22.100 eq 21 any
static (inside,outside) tcp interface 21 access-list id7036X25321.0 tcp 0 0
access-list id7036X25321.1 permit tcp host 172.16.22.100 eq 25 any
static (inside,outside) tcp interface 25 access-list id7036X25321.1 tcp 0 0

Example 2: A policy
rule with many objects

If firewall does not support object grouping, this rule
is expanded as follows:

Src Dst Srv Action
netA hostC http Accept
netB hostC ftp Accept
netA hostC http Accept
netB hostC ftp Accept

Example 3: Policy Rule
with Negation

Many firewalls support negation in one of the rule
elements, but the following simple translation is
incorrect:

Src Dst Srv Action
! netA hostC http Accept
! netB hostC http Accept

Example 3: Processed
rule

The program converts the rule as follows:

Src Dst Srv Action

!{netA,netB} hostC http Accept

Chain Src Dst Srv Action

FORWARD Any hostC http tmp_chain

tmp_chain netA,netB Any Any Return

tmp_chain Any Any Any Accept

Example 3: Generated
CodeFor iptables:

$IPTABLES -N TMPCHAIN
$IPTABLES -A FORWARD -p tcp -d hostC --dport 80 -j TMPCHAIN
$IPTABLES -A TMPCHAIN -s netA -j RETURN
$IPTABLES -A TMPCHAIN -s netB -j RETURN
$IPTABLES -A TMPCHAIN -m state --state NEW -j ACCEPT

For ipfilter:

skip 2 in proto tcp from netA to any
skip 1 in proto tcp from netB to any
pass in quick proto tcp from any to hostC port = 80

Example 4: Optimization

Trivial translation leads to O(N3) complexity:
Src Dst Srv Action

hostA net-1 http Accept
hostA net-1 icmp Accept
hostA net-2 http Accept
hostA net-2 icmp Accept
hostB net-1 http Accept
hostB net-1 icmp Accept
hostB net-2 http Accept
hostB net-2 icmp Accept

Example 4: Optimization
Better translation of the same rule:

This has only O(N) complexity

Chain Src Dst Srv Action

hostA Any Any C1

hostB Any Any C1

C1 Any net-1 Any C2

C1 Any net-2 Any C2

C2 Any Any http Accept

C2 Any Any icmp Accept

 Some firewall can analyze packets regardless of
ingress and egress interface, some can’t

 In complex network configurations manual
assigning rules to interfaces may be error-prone

Example 5: Assigning
Rules to Interfaces

Example 5: Assigning
Rules to Interfaces

The following rules need to be assigned to interfaces:

Rule #1 is assigned to all interfaces
Rule #2 is assigned to interface “dmz”
Rule #3 is assigned to interface “inside”

Rule # Src Dst
1 Any 10.2.0.10 ..

..2 10.2.0.1
0

10.1.0.10 ..
..3 10.1.0.1

0
10.2.0.10 ..

..

Interface “outside”
192.0.2.1/24
Network zone “any”

Interface “dmz”
10.2.0.1/24
Network zone “10.2.0.0/24”

Interface “inside”
10.1.0.1/24
Network zone “10.1.0.0/24”

When new network is added behind some interface, all you need to do is add it to the
network zone of this interface and recompile. If there are rules that should be added to this
interface because of the new network, the program will add them automatically.

 Combines automation with flexibility, policy
designer maintains full control

 Simplifies management of multiple firewalls in
heterogeneous environments

 Provides easy migration path for different firewall
platforms

Conclusion

Extras

 High Availability configurations

 Support for QoS

 Templates with parameters

 Log analyser

Future Development

 Started in 2000

 Hosted on SourceForge

 Home page: http://www.fwbuilder.org/

 Binary packages are built for

 Fedora Core

 Ubuntu

 FreeBSD

The Project

 Translate rules defined in the GUI to the target
firewall configuration language.

 Compiler consists of several elementary building
blocks, or “Rule Processors”.

 Each rule processor performs elementary
operation on a rule and passes it to the next.

Policy Compilers

Rule
Processor 1

Rule
Processor 2

Rule
Processor 3

rule #4

rule #3

rule #2

rule #1

Original
Rules

rule #4

rule #4.1

rule #3

rule #3.1

rule #2

rule #1

Processed Rules

 Operations include verification, transformation and
optimization.

 Rule processors may operate on a single rule or
the whole rule set.

 Each rule processor is a C++ class

 Rule processors can be reused in different policy
compilers

Rule Processors

 Convert complex rule to a set of atomic rules

 Translate rule with negation

 Optimization

Examples of Rule
Processors

