
GUARDING YOUR BUSINESS

Syslog-ng 3
A step towards log

processing

Márton Illés
marton.illes@balabit.com

GUARDING YOUR BUSINESS

Contents

■ Short introduction to syslog

■ The syslog-ng story

■ New trends in log collection

■ New vision of syslog-ng

■ syslog-ng 3.0

■ Log processing with syslog-ng

GUARDING YOUR BUSINESS

Syslog 101

■ Spin-off of sendmail by Eric Allmann

■ Describing simple events in plain English

■ Easy to use API: syslog()

■ Messages are stored in files or sent over the
network using UDP transport

■ Some application simply store messages directly
in files, in SQL database or in proprietary format

■ Still the most widespread solution

■ Only UNIX and network devices

GUARDING YOUR BUSINESS

Problems with the syslog protocol

■ No structure at all: hard to parse!

□ Priority and facility is very limited
■ Need for central collection, but...

□ No authentication, no encryption, no integrity
check, no digital signature

□ No flow-control
□ UDP based transfer with high message loss

Jul 3 22:45:21 octane sshd[18206]:
Accepted publickey for marci from 127.0.0.1 port 37126 ssh2

GUARDING YOUR BUSINESS

The syslog-ng story...

■ Designed for central log collection since the
beginning

■ First release in 1998, now part of most Linux
distribution and available for most UNIX flavours

■ Operates in multiple global networks serving
thousands of devices

■ Development funded by BalaBit

□ Open Source Edition, released under GPL
□ Commercial “Premium” and appliance (SSB)

editions since 2007/2008

GUARDING YOUR BUSINESS

Main features of syslog-ng

■ Support for TCP based message transport

□ Understands different syslog flavors (eg: Cisco)
□ Converting between UDP/TCP transports

■ Flexible filtering capabilities

■ Different, customizable log destinations

□ Message forwarding using TCP
□ File, pipe, program, fifo destinations
□ Utilizing macros and templates

■ “Log router” utilizing filters and destinations

GUARDING YOUR BUSINESS

The “log router”

Source DestinationFilter

tcp();

program(„nagios”);

file(„nagios.log”);

Log statement:

DestinationFilter

tcp(“siem.example.com”);

priority(emerg..error);

GUARDING YOUR BUSINESS

New trends in log collection

■ Earlier, logs were collected for IT management

□ Troubleshooting, accounting
□ Forensics situations (mainly detective situation)

■ The focus and use-cases are changing

□ Security incident and event mgmt. (SIEM)
□ Various regulations
□ Real-time alerting and correlation
□ More messages coming from applications, not

just from the infrastructure
■ Logs are to be processed automatically

GUARDING YOUR BUSINESS

New vision of syslog-ng

■ Acting as a “log router” is not enough anymore

■ Syslog-ng needs to aid message analysis

□ Pre-parse message and move them to a
common base

□ Extract information from messages
□ Forward messages based on the message

content/type/classification
■ Syslog-ng is a great integration platform

□ A good position to influence message flow

GUARDING YOUR BUSINESS

Syslog-ng 3.0

■ Enhanced transport infrastructure

□ Support for new RFC-5426 syslog protocol
□ TLS encrypted transport

■ About 70% improved performance over 2.0

■ Content related functions

□ Message parsers to extract information into
name-value pairs and to classify messages

□ Rewrite framework to fixup messages before
analysis

■ Native SQL destination support!

GUARDING YOUR BUSINESS

The new style “log router”

S

D

F

RP

DFP

DRP

db­parser();

match(„violation” value(„.classify.class”));

csv­parser();

file(„violation.log”);

Log processing tree:

subst(„foo”, „$PROGRAM”);

tcp(“siem”);

file(„apache.log”);

GUARDING YOUR BUSINESS

Message parsing

■ A parser is an element in the processing tree:
□ Analyzes the content of the message

□ Extracts variable information from messages into name-value
pairs which could be used in templates latter

□ Classify/tag messages for further filtering

■ Two kind of parsers support as of now: csv and db based

■ There are other special requirements for parsing
□ XML based messages (eg: new Cisco IOS logs)

□ New RFC-5426 structured data handling

GUARDING YOUR BUSINESS

csv-parser()

■ Simple parser to handle “comma separated values”
□ Each column is parsed into name-value pairs

□ Not limited to just “commas”

□ It only recognizes one specific format so messages needs to be
filtered before to match the right csv-parser()

■ Typical use-cases:
□ Apache, Squid, Nagios logs

GUARDING YOUR BUSINESS

Unstructured message parsing

■ Parsing unstructured, badly formated messages
requires a pattern database

■ Most text/message parsing utilizes regular
expressions, however...

□ Regexps are hard to write (eg: IPv6 address)
□ Regexps are hard to understand
□ Regexps do not scale to a large number of

patterns
□ Regexps do not scale to a high message rate

GUARDING YOUR BUSINESS

db-parser()

■ Syslog-ng parser to parse messages based on a
pattern database

□ Recognize, classify, tag messages
□ Extract information from messages
□ Easy to use unlike the csv-parser()

■ Performance:

□ Pattern matching costs about 10-20% of
performance relative to storing into files

□ Algorithm is close to O(1) on the number of
patterns and depends on the length of the msg

GUARDING YOUR BUSINESS

The pattern database and matching

■ The on-disk format is XML

■ The in-memory format is a radix like tree structure

□ Literal and special “parser” nodes
□ Predefined “parser” nodes to match variable

parts:
□ IP addresses (IPv4, IPv6)
□ Strings, quoted-strings, numbers

□ “Parser” matches are stored in name-values
□ Longest prefix matching

GUARDING YOUR BUSINESS

Pattern database example
<patterndb version=”2” pub_date=”2009-07-01”>
 <ruleset name=”sshd”>
 <rules>
 <rule id=”1” class=”login”>
 <patterns>
 <pattern>Accepted publickey for @STRING:username@ from
@IPv4:source@ port @NUMBER:port@ ssh2</pattern>
 </patterns>
 </rule>
 </rules>
 </ruleset>
</patterndb>

destination d_sql {
sql(type(mysql) host(dbhost) database(logs)

table(“login_$R_YEAR_$R_MONTH_$R_DAY) columns(“date
timestamp”, “username”, “source)
values(“$R_UNIXTIME”, “$username”, “$source”));};

GUARDING YOUR BUSINESS

Pattern database in memory

Accepted publickey for

STRING: username

from

port

IPv4: source

GUARDING YOUR BUSINESS

Pattern database use-cases

■ Artificial ignorance with log classification

□ Similar to the “logcheck” project
□ Real-time alerting and reporting
□ “logcheck” converted patterndb is available on

BalaBit website
■ Extracting information from messages and storing

into different customized SQL tables

□ Easier to aggregate and report
■ Pre-processing messages for correlation

□ Maybe “in-syslog-ng” correlation one day...

GUARDING YOUR BUSINESS

Other noteworthy features in 3.0

■ BalaBit supported free binary packages to free
UNIX platforms (Linux, *BSDs)

■ Support for different character encoding

■ Configuration include file support

■ Timezone as names (eg: Europe/Budapest)

■ PCRE and glob based filters

■ Extended statistics framework over unix-socket

■ Self-monitoring and automatic restart

GUARDING YOUR BUSINESS

Further plans

■ Community built pattern database

■ Transport improvements: application layer ACKs

■ Extended classification with TAGs, TAG-clouds

□ Dynamic SQL schemas based on tags
■ New release model

□ Smaller “feature” releases
□ Longer supported “stable” releases

■ More transparent development process

□ Public bugzilla, git repo etc.

GUARDING YOUR BUSINESS

Summary

■ There are severe problems how logging is done today

■ More logs are coming from more applications

■ Log processing and analysis must be done automatically
□ We need structured log messages

□ CEF, Cisco's XML, RFC-5426 are some steps

■ syslog-ng vision has been adjusted
□ Not a mere log transport infrastructure anymore

□ Helping log processing and analysis

■ New regexp free message parser

GUARDING YOUR BUSINESS

Questions and answers

Thank You for Your Attention!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

