
Copyright © The OWASP Foundation
Permission is granted to copy, distribute and/or modify this document
under the terms of the OWASP License.

The OWASP Foundation
http://www.owasp.org/

OWASP in a Nutshell

RMLL2010 - Bordeaux – 7th July 2010

Sébastien Gioria
OWASP Global Education committee
OWASP French Chapter Leader

sebastien.gioria@owasp.org

Agenda

 OWASP ?
 OWASP projects in a Nutshell
 Top10 Risk in AppSecurity

2

Who Am I ?

  More than 13 years in Security
  Technical and Management roles in Information Security in

Bank, Insurance, Telecom
  Technical expertise
  PenTesting, Digital Forensics
  Appsecurity
  Risk assesment

o  Senior Security Consultant for a French Audit Groupe
(s.gioria@groupey.fr)

o  OWASP France Leader - Evangelist - OWASP Global Education
Comittee Member (sebastien.gioria@owasp.org)

o  ISO 27005 Risk Manager

@SPoint

Copyright © The OWASP Foundation
Permission is granted to copy, distribute and/or modify this document
under the terms of the OWASP License.

The OWASP Foundation
http://www.owasp.org/

OWASP ?

Open Web Application Security Project explain

4

OWASP Worldwide Community

5

0

5000

10000

15000

20000

25000

Participants

0
20
40
60
80

100
120
140
160

Chapters

OWASP Dashboard

6

0

50

100

150

200

250

10/1/2002 10/1/2003 10/1/2004 10/1/2005 10/1/2006 10/1/2007

Worldwide Users Most New Visitors

22,782,709 page views

OWASP Conferences (2008-2010)

7

NYC
Sep 2008

DC
Nov 2009/2010

Brussels
May 2008 Poland

May 2009

Taiwan
Oct 2008

Portugal
Summit

Nov 2008

Israel
Sep 2008

India
Aug 2008

Gold Coast
Feb 2008

+2009 + 2010

Minnesota
Oct 2008

California
Oct 2010

Stockholm
Jun 2010

Ireland
Sep
2010

OWASP KnowledgeBase • 6,381 total articles
• 427 presentations
• 200 updates per day
• 271 mailing lists
• 180 blogs monitored
• 19 deface attempts

OWASP AppSec News and Intelligence

 Moderated AppSec News Feed
 http://www.google.com/reader/

public/atom/user/
16712724397688793161/state/
com.google/broadcast

 OWASP Podcast
 http://itunes.apple.com/

WebObjects/MZStore.woa/wa/
viewPodcast?id=300769012

 OWASP TV
 http://www.owasp.tv

9

OWASP AppSec Job Board

10

Copyright © The OWASP Foundation
Permission is granted to copy, distribute and/or modify this document
under the terms of the OWASP License.

The OWASP Foundation
http://www.owasp.org/

OWASP projects in a nutshell

 Education
 API(s)
 Tools
 Guides

11

If you think education is futile, try ignorance.

 Top10 of course !
 WebGoat
 OWASP Broken Web Application

12

OWASP WebGoat

13

Code, Code, Code and more…

 ESAPI
 CSRF Guard
 …..

14

OWASP (ESAPI)

Custom Enterprise Web Application

OWASP Enterprise Security API

A
u

th
en

ti
ca

to
r

U
se

r

A
cc

es
sC

on
tr

ol
le

r

A
cc

es
sR

ef
er

en
ce

M
ap

V
al

id
at

or

En
co

de
r

H
TT

P
U

ti
lit

ie
s

En
cr

yp
to

r

En
cr

yp
te

dP
ro

pe
rt

ie
s

R
an

do
m

iz
er

Ex
ce

pt
io

n
H

an
dl

in
g

Lo
gg

er

In
tr

us
io

nD
et

ec
to

r

Se
cu

ri
ty

C
on

fi
gu

ra
ti

on

Your Existing Enterprise Services or Libraries

ESAPI Homepage: http://www.owasp.org/index.php/ESAPI

Add Token
to HTML

OWASP CSRFGuard

16

User
(Browser)

Business
Processing

OWASP
CSRFGuard

Verify Token

 Adds token to:
 href attribute
 src attribute
 hidden field in all forms

 Actions:
 Log
 Invalidate
 Redirect

http://www.owasp.org/index.php/CSRFGuard

AppSecurity swiss knife

 WebScarab
 JbroFuzz
 DirBuster
 OWASP Live CD
…..

17

18

19

20

OK, but I need more….

 Code Review Guide
 Testing Guide
 Building Guide
 OWASP ASVS
 OpenSAMM
 ……

21

OWASP AppSec Guides

 Free and open source
 Cheap printed copies
 Covers all critical

security controls
 Hundreds of expert

authors
 All aspects of

application security

22

4 guides

23

Building Guide Code Review Guide Testing Guide

Application Security Desk Reference (ASDR)

(c)2010 Sébastien GIORIA

OWASP Application Security Verification Std

 Standard for verifying
the security of web
applications

 Four levels
 Automated
 Manual
 Architecture
 Internal

24

OWASP Software Assurance Maturity Model

25

Want More OWASP?

  OWASP .NET Project
  OWASP ASDR Project
  OWASP AntiSamy Project
  OWASP AppSec FAQ Project
  OWASP Application Security Assessment Standards Project
  OWASP Application Security Metrics Project
  OWASP Application Security Requirements Project
  OWASP CAL9000 Project
  OWASP CLASP Project
  OWASP CSRFGuard Project
  OWASP CSRFTester Project
  OWASP Career Development Project
  OWASP Certification Criteria Project
  OWASP Certification Project
  OWASP Code Review Project
  OWASP Communications Project
  OWASP DirBuster Project
  OWASP Education Project
  OWASP Encoding Project
  OWASP Enterprise Security API
  OWASP Flash Security Project
  OWASP Guide Project
  OWASP Honeycomb Project
  OWASP Insecure Web App Project
  OWASP Interceptor Project

  OWASP JBroFuzz
  OWASP Java Project
  OWASP LAPSE Project
  OWASP Legal Project
  OWASP Live CD Project
  OWASP Logging Project
  OWASP Orizon Project
  OWASP PHP Project
  OWASP Pantera Web Assessment Studio Project
  OWASP SASAP Project
  OWASP SQLiX Project
  OWASP SWAAT Project
  OWASP Sprajax Project
  OWASP Testing Project
  OWASP Tools Project
  OWASP Top Ten Project
  OWASP Validation Project
  OWASP WASS Project
  OWASP WSFuzzer Project
  OWASP Web Services Security Project
  OWASP WebGoat Project
  OWASP WebScarab Project
  OWASP XML Security Gateway Evaluation Criteria Project
  OWASP on the Move Project

26

Copyright © The OWASP Foundation
Permission is granted to copy, distribute and/or modify this document
under the terms of the OWASP License.

The OWASP Foundation
http://www.owasp.org/

Top10 Risk in AppSecurity

Also known as the OWASP Top10 2010

27

1st Step
Determine if I’m in the right talk

28

My Application will be hacked ! Let Me take
you on the
right way 29

Your
Application

will be
Hacked ;)

Your
Application

been
Hacked

YES

NO

NO

YES

Don’t be the next

30

©
 R

an
da

l M
un

ro
e

(x
kc

d.
co

m
)

SQL Injection – Illustrated

Fi
re

w
al

l

Hardened OS

Web Server

App Server

Fi
re

w
al

l

D
at

ab
as

es

Le
ga

cy
 S

ys
te

m
s

W
eb

 S
er

vi
ce

s
D

ire
ct

or
ie

s
H

um
an

 R
es

rc
s

B
ill

in
g

Custom Code

APPLICATION
ATTACK

N
et

w
or

k
La

ye
r

A
pp

lic
at

io
n

La
ye

r

A
cc

ou
nt

s
Fi

na
nc

e
A

dm
in

is
tra

tio
n

Tr
an

sa
ct

io
ns

C

om
m

un
ic

at
io

n
K

no
w

le
dg

e
M

gm
t

E-
C

om
m

er
ce

B

us
. F

un
ct

io
ns

HTTP
request



SQL
query



DB Table



HTTP
response




"SELECT * FROM
accounts WHERE

acct=‘’ OR
1=1--’"

1. Application presents a form to
the attacker
2. Attacker sends an attack in the
form data
3. Application forwards attack to
the database in a SQL query

Account Summary

Acct:5424-6066-2134-4334
Acct:4128-7574-3921-0192
Acct:5424-9383-2039-4029
Acct:4128-0004-1234-0293

4. Database runs query containing
attack and sends encrypted results
back to application

5. Application decrypts data as
normal and sends results to the user

Account:

 SKU:

Account:

 SKU:

A1 – Injection

• Tricking an application into including unintended commands in the data
sent to an interpreter

Injection means…

• Take strings and interpret them as commands
• SQL, OS Shell, LDAP, XPath, Hibernate, etc…

Interpreters…

• Many applications still susceptible (really don’t know why)
• Even though it’s usually very simple to avoid

SQL injection is still quite common

• Usually severe. Entire database can usually be read or modified
• May also allow full database schema, or account access, or even OS level

access

Typical Impact

A1 – Avoid Injection Flaws

 Recommendations
1.  Avoid the interpreter entirely, or
2.  Use an interface that supports bind variables (e.g., prepared

statements, or stored procedures),
  Bind variables allow the interpreter to distinguish between code and

data

3.  Encode all user input before passing it to the interpreter
 Always perform ‘white list’ input validation on all user supplied

input
 Always minimize database privileges to reduce the impact of a

flaw

 References
 For more details, read the new http://www.owasp.org/index.php/

SQL_Injection_Prevention_Cheat_Sheet

What's going on?

34

What's going on?

35

Good Site (www.leboncoin.fr)

Bad Site (ha.ckers.fr

A2 – Cross-Site Scripting (XSS)

• Raw data from attacker is sent to an innocent user’s browser

Occurs any time…

• Stored in database
• Reflected from web input (form field, hidden field, URL, etc…)
• Sent directly into rich JavaScript client

Raw data…

• Try this in your browser – javascript:alert(document.cookie)

Virtually every web application has this problem

• Steal user’s session, steal sensitive data, rewrite web page, redirect user to
phishing or malware site

• Most Severe: Install XSS proxy which allows attacker to observe and direct
all user’s behavior on vulnerable site and force user to other sites

Typical Impact

(AntiSamy)

A2 – Avoiding XSS Flaws

 Recommendations
 Eliminate Flaw

  Don’t include user supplied input in the output page

 Defend Against the Flaw
  Primary Recommendation: Output encode all user supplied input
 (Use OWASP’s ESAPI to output encode:
 http://www.owasp.org/index.php/ESAPI
  Perform ‘white list’ input validation on all user input to be included in

page
  For large chunks of user supplied HTML, use OWASP’s AntiSamy to

sanitize this HTML to make it safe
 See: http://www.owasp.org/index.php/AntiSamy

 References
 For how to output encode properly, read the new http://

www.owasp.org/index.php/XSS_(Cross Site Scripting) Prevention Cheat Sheet

Safe Escaping Schemes in Various HTML Execution
Contexts

HTML Style Property Values
(e.g., .pdiv a:hover {color: red; text-decoration:

underline})

JavaScript Data
(e.g., <script> some javascript </script>)

HTML Attribute Values
(e.g., <input name='person' type='TEXT'

value='defaultValue'>)

HTML Element Content
(e.g., <div> some text to display </div>)

URI Attribute Values
(e.g., <a href="javascript:toggle('lesson')")

#4: All non-alphanumeric < 256  \HH
ESAPI: encodeForCSS()

#3: All non-alphanumeric < 256  \xHH
ESAPI: encodeForJavaScript()

#1: (&, <, >, ")  &entity; (', /)  &#xHH;
ESAPI: encodeForHTML()

#2: All non-alphanumeric < 256  &#xHH
ESAPI: encodeForHTMLAttribute()

#5: All non-alphanumeric < 256  %HH
ESAPI: encodeForURL()

ALL other contexts CANNOT include Untrusted Data
Recommendation: Only allow #1 and #2 and disallow all others

See: www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet for more
details

What's going on?

39

Hacker

Customer

GET /login.jsp?SESSIONID=123456789

OK SESSIONID=12345679 Authenticated

A3 – Broken Authentication and Session
Management

• Means credentials have to go with every request
• Should use SSL for everything requiring authentication

HTTP is a “stateless” protocol

• SESSION ID used to track state since HTTP doesn’t
• and it is just as good as credentials to an attacker

• SESSION ID is typically exposed on the network, in browser, in logs, …

Session management flaws

• Change my password, remember my password, forgot my password, secret
question, logout, email address, etc…

Beware the side-doors

• User accounts compromised or user sessions hijacked

Typical Impact

A3 – Avoiding Broken Authentication and
Session Management

 Verify your architecture
 Authentication should be simple, centralized, and standardized
 Use the standard session id provided by your container
 Be sure SSL protects both credentials and session id at all times

 Verify the implementation
 Forget automated analysis approaches
 Check your SSL certificate
 Examine all the authentication-related functions
 Verify that logoff actually destroys the session
 Use OWASP’s WebScarab to test the implementation

What's going on?

A4 – Insecure Direct Object References

• This is part of enforcing proper “Authorization”, along with
A7 – Failure to Restrict URL Access

How do you protect access to your data?

• Only listing the ‘authorized’ objects for the current user, or
• Hiding the object references in hidden fields
• … and then not enforcing these restrictions on the server side
• This is called presentation layer access control, and doesn’t work
• Attacker simply tampers with parameter value

A common mistake …

• Users are able to access unauthorized files or data

Typical Impact

A4 – Avoiding Insecure Direct Object
References

 Eliminate the direct object reference
 Replace them with a temporary mapping value (e.g. 1, 2, 3)
 ESAPI provides support for numeric & random mappings

  IntegerAccessReferenceMap & RandomAccessReferenceMap

 Validate the direct object reference
 Verify the parameter value is properly formatted
 Verify the user is allowed to access the target object

  Query constraints work great!

 Verify the requested mode of access is allowed to the target
object (e.g., read, write, delete)

http://app?file=1
Report123.xls

http://app?id=7d3J93
Acct:9182374 http://app?id=9182374

http://app?file=Report123.xls
Access

Reference
Map

What's going on?

45

Surf the Web

A5 – Cross Site Request Forgery (CSRF)

• An attack where the victim’s browser is tricked into issuing a command to
a vulnerable web application

• Vulnerability is caused by browsers automatically including user
authentication data (session ID, IP address, Windows domain credentials,
…) with each request

Cross Site Request Forgery

• What if a hacker could steer your mouse and get you to click on links in
your online banking application?

• What could they make you do?

Imagine…

• Initiate transactions (transfer funds, logout user, close account)
• Access sensitive data
• Change account details

Typical Impact

CSRF Vulnerability Pattern

 The Problem
 Web browsers automatically include most credentials with each

request
 Even for requests caused by a form, script, or image on another site

 All sites relying solely on automatic
credentials are vulnerable!
 (almost all sites are this way)

 Automatically Provided Credentials
 Session cookie
 Basic authentication header
 IP address
 Client side SSL certificates
 Windows domain authentication

A5 – Avoiding CSRF Flaws

  Add a secret, not automatically submitted, token to ALL sensitive requests
 This makes it impossible for the attacker to spoof the request

  (unless there’s an XSS hole in your application)
 Tokens should be cryptographically strong or random

  Options
 Store a single token in the session and add it to all forms and links

  Hidden Field: <input name="token" value="687965fdfaew87agrde"
type="hidden"/>

  Single use URL: /accounts/687965fdfaew87agrde
  Form Token: /accounts?auth=687965fdfaew87agrde …

 Beware exposing the token in a referer header
  Hidden fields are recommended

 Can have a unique token for each function
  Use a hash of function name, session id, and a secret

 Can require secondary authentication for sensitive functions
(e.g., eTrade)

  Don’t allow attackers to store attacks on your site
 Properly encode all input on the way out
 This renders all links/requests inert in most interpreters

See the new: www.owasp.org/index.php/CSRF_Prevention_Cheat_Sheet for
more details

What's going on?

49

A6 – Security Misconfiguration

• All through the network and platform
• Don’t forget the development environment

Web applications rely on a secure foundation

• Think of all the places your source code goes
• Security should not require secret source code

Is your source code a secret?

• All credentials should change in production

CM must extend to all parts of the application

• Install backdoor through missing network or server patch
• XSS flaw exploits due to missing application framework patches
• Unauthorized access to default accounts, application functionality or data,

or unused but accessible functionality due to poor server configuration

Typical Impact

A6 – Avoiding Security Misconfiguration

 Verify your system’s configuration management
 Secure configuration “hardening” guideline

  Automation is REALLY USEFUL here

 Must cover entire platform and application
 Keep up with patches for ALL components

  This includes software libraries, not just OS and Server applications

 Analyze security effects of changes

 Can you “dump” the application configuration
 Build reporting into your process
 If you can’t verify it, it isn’t secure

 Verify the implementation
 Scanning finds generic configuration and missing patch problems

What's going on?

52

A7 – Failure to Restrict URL Access

• This is part of enforcing proper “authorization”, along with
A4 – Insecure Direct Object References

How do you protect access to URLs (pages)?

• Displaying only authorized links and menu choices
• This is called presentation layer access control, and doesn’t work
• Attacker simply forges direct access to ‘unauthorized’ pages

A common mistake …

• Attackers invoke functions and services they’re not authorized for
• Access other user’s accounts and data
• Perform privileged actions

Typical Impact

A7 – Avoiding URL Access Control Flaws

  For each URL, a site needs to do 3 things
 Restrict access to authenticated users (if not public)
 Enforce any user or role based permissions (if private)
 Completely disallow requests to unauthorized page types (e.g., config files, log

files, source files, etc.)

  Verify your architecture
 Use a simple, positive model at every layer
 Be sure you actually have a mechanism at every layer

  Verify the implementation
 Forget automated analysis approaches
 Verify that each URL in your application is protected by either

  An external filter, like Java EE web.xml or a commercial product
  Or internal checks in YOUR code – Use ESAPI’s isAuthorizedForURL() method

 Verify the server configuration disallows requests to unauthorized file types
 Use WebScarab or your browser to forge unauthorized requests

What's going on?

55

A8 – Unvalidated Redirects and Forwards

• And frequently include user supplied parameters in the destination URL
• If they aren’t validated, attacker can send victim to a site of their

choice

Web application redirects are very common

• They internally send the request to a new page in the same application
• Sometimes parameters define the target page
• If not validated, attacker may be able to use unvalidated forward to

bypass authentication or authorization checks

Forwards (aka Transfer in .NET) are common too

• Redirect victim to phishing or malware site
• Attacker’s request is forwarded past security checks, allowing

unauthorized function or data access

Typical Impact

A8 – Avoiding Unvalidated Redirects and
Forwards
  There are a number of options

1.  Avoid using redirects and forwards as much as you can
2.  If used, don’t involve user parameters in defining the target URL
3.  If you ‘must’ involve user parameters, then either

a)  Validate each parameter to ensure its valid and authorized for the current user, or
b)  (preferred) – Use server side mapping to translate choice provided to user with actual

target page

  Defense in depth: For redirects, validate the target URL after it is calculated to
make sure it goes to an authorized external site

  ESAPI can do this for you!!
  See: SecurityWrapperResponse.sendRedirect(URL)
  http://owasp-esapi-java.googlecode.com/svn/trunk_doc/org/owasp/esapi/filters/

SecurityWrapperResponse.html#sendRedirect(java.lang.String)

  Some thoughts about protecting Forwards
  Ideally, you’d call the access controller to make sure the user is authorized

before you perform the forward (with ESAPI, this is easy)
 With an external filter, like Siteminder, this is not very practical
 Next best is to make sure that users who can access the original page are ALL

authorized to access the target page.

What's going on?

58

A9 – Insecure Cryptographic Storage

• Failure to identify all sensitive data
• Failure to identify all the places that this sensitive data gets stored

• Databases, files, directories, log files, backups, etc.
• Failure to properly protect this data in every location

Storing sensitive data insecurely

• Attackers access or modify confidential or private information
• e.g, credit cards, health care records, financial data (yours or your

customers)
• Attackers extract secrets to use in additional attacks
• Company embarrassment, customer dissatisfaction, and loss of trust
• Expense of cleaning up the incident, such as forensics, sending apology

letters, reissuing thousands of credit cards, providing identity theft
insurance

• Business gets sued and/or fined

Typical Impact

A9 – Avoiding Insecure Cryptographic
Storage

  Verify your architecture
  Identify all sensitive data
  Identify all the places that data is stored
  Ensure threat model accounts for possible attacks
  Use encryption to counter the threats, don’t just ‘encrypt’ the data

  Protect with appropriate mechanisms
  File encryption, database encryption, data element encryption

  Use the mechanisms correctly
  Use standard strong algorithms
  Generate, distribute, and protect keys properly
  Be prepared for key change

  Verify the implementation
  A standard strong algorithm is used, and it’s the proper algorithm for this situation
  All keys, certificates, and passwords are properly stored and protected
  Safe key distribution and an effective plan for key change are in place
  Analyze encryption code for common flaws

What's going on?

61

A10 – Insufficient Transport Layer
Protection

• Failure to identify all sensitive data
• Failure to identify all the places that this sensitive data is sent

• On the web, to backend databases, to business partners, internal
communications

• Failure to properly protect this data in every location

Transmitting sensitive data insecurely

• Attackers access or modify confidential or private information
• e.g, credit cards, health care records, financial data (yours or your

customers)
• Attackers extract secrets to use in additional attacks
• Company embarrassment, customer dissatisfaction, and loss of trust
• Expense of cleaning up the incident
• Business gets sued and/or fined

Typical Impact

A10 – Avoiding Insufficient Transport Layer
Protection
 Protect with appropriate mechanisms

 Use TLS on all connections with sensitive data
 Individually encrypt messages before transmission

 E.g., XML-Encryption
 Sign messages before transmission

 E.g., XML-Signature

 Use the mechanisms correctly
 Use standard strong algorithms (disable old SSL algorithms)
 Manage keys/certificates properly
 Verify SSL certificates before using them
 Use proven mechanisms when sufficient

  E.g., SSL vs. XML-Encryption
  See: http://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet for

more details

Summary

64

The OWASP Top Ten 2010

http://www.owasp.org/index.php/Top_10

Summary: How do you address these
problems?
 Develop Secure Code

 Follow the best practices in OWASP’s Guide to Building Secure Web
Applications
  http://www.owasp.org/index.php/Guide

 Use OWASP’s Application Security Verification Standard as a guide to
what an application needs to be secure
  http://www.owasp.org/index.php/ASVS

 Use standard security components that are a fit for your organization
  Use OWASP’s ESAPI as a basis for your standard components
  http://www.owasp.org/index.php/ESAPI

 Review Your Applications
 Have an expert team review your applications
 Review your applications yourselves following OWASP Guidelines

  OWASP Code Review Guide:
 http://www.owasp.org/index.php/Code_Review_Guide

  OWASP Testing Guide:
 http://www.owasp.org/index.php/Testing_Guide

Just click here http://www.owasp.org

67

Acknowledgements - Copyright

 I like to thank the Primary Project Contributors
 Aspect Security for sponsoring the project
 Jeff Williams (Author who conceived of and launched Top 10 in 2003)
 Dave Wichers (Author and current project lead)

 Antonio Fontes (OWASP Geneva Chapter) for some thoughts
on Top10

 You are free:
 To share (copy, distribute, transmit)
 To remix

 But only if:
 You use it for non-commercial purposes
 And you keep sharing your result the same way I did 68

