
Copyright © The OWASP Foundation
Permission is granted to copy, distribute and/or modify this document
under the terms of the OWASP License.

The OWASP Foundation
http://www.owasp.org/

OWASP in a Nutshell

RMLL2010 - Bordeaux – 7th July 2010

Sébastien Gioria
OWASP Global Education committee
OWASP French Chapter Leader

sebastien.gioria@owasp.org

Agenda

 OWASP ?
 OWASP projects in a Nutshell
 Top10 Risk in AppSecurity

2

Who Am I ?

  More than 13 years in Security
  Technical and Management roles in Information Security in

Bank, Insurance, Telecom
  Technical expertise
  PenTesting, Digital Forensics
  Appsecurity
  Risk assesment

o  Senior Security Consultant for a French Audit Groupe
(s.gioria@groupey.fr)

o  OWASP France Leader - Evangelist - OWASP Global Education
Comittee Member (sebastien.gioria@owasp.org)

o  ISO 27005 Risk Manager

@SPoint

Copyright © The OWASP Foundation
Permission is granted to copy, distribute and/or modify this document
under the terms of the OWASP License.

The OWASP Foundation
http://www.owasp.org/

OWASP ?

Open Web Application Security Project explain

4

OWASP Worldwide Community

5

0

5000

10000

15000

20000

25000

Participants

0
20
40
60
80

100
120
140
160

Chapters

OWASP Dashboard

6

0

50

100

150

200

250

10/1/2002 10/1/2003 10/1/2004 10/1/2005 10/1/2006 10/1/2007

Worldwide Users Most New Visitors

22,782,709 page views

OWASP Conferences (2008-2010)

7

NYC
Sep 2008

DC
Nov 2009/2010

Brussels
May 2008 Poland

May 2009

Taiwan
Oct 2008

Portugal
Summit

Nov 2008

Israel
Sep 2008

India
Aug 2008

Gold Coast
Feb 2008

+2009 + 2010

Minnesota
Oct 2008

California
Oct 2010

Stockholm
Jun 2010

Ireland
Sep
2010

OWASP KnowledgeBase • 6,381 total articles
• 427 presentations
• 200 updates per day
• 271 mailing lists
• 180 blogs monitored
• 19 deface attempts

OWASP AppSec News and Intelligence

 Moderated AppSec News Feed
 http://www.google.com/reader/

public/atom/user/
16712724397688793161/state/
com.google/broadcast

 OWASP Podcast
 http://itunes.apple.com/

WebObjects/MZStore.woa/wa/
viewPodcast?id=300769012

 OWASP TV
 http://www.owasp.tv

9

OWASP AppSec Job Board

10

Copyright © The OWASP Foundation
Permission is granted to copy, distribute and/or modify this document
under the terms of the OWASP License.

The OWASP Foundation
http://www.owasp.org/

OWASP projects in a nutshell

 Education
 API(s)
 Tools
 Guides

11

If you think education is futile, try ignorance.

 Top10 of course !
 WebGoat
 OWASP Broken Web Application

12

OWASP WebGoat

13

Code, Code, Code and more…

 ESAPI
 CSRF Guard
 …..

14

OWASP (ESAPI)

Custom Enterprise Web Application

OWASP Enterprise Security API

A
u

th
en

ti
ca

to
r

U
se

r

A
cc

es
sC

on
tr

ol
le

r

A
cc

es
sR

ef
er

en
ce

M
ap

V
al

id
at

or

En
co

de
r

H
TT

P
U

ti
lit

ie
s

En
cr

yp
to

r

En
cr

yp
te

dP
ro

pe
rt

ie
s

R
an

do
m

iz
er

Ex
ce

pt
io

n
H

an
dl

in
g

Lo
gg

er

In
tr

us
io

nD
et

ec
to

r

Se
cu

ri
ty

C
on

fi
gu

ra
ti

on

Your Existing Enterprise Services or Libraries

ESAPI Homepage: http://www.owasp.org/index.php/ESAPI

Add Token
to HTML

OWASP CSRFGuard

16

User
(Browser)

Business
Processing

OWASP
CSRFGuard

Verify Token

 Adds token to:
 href attribute
 src attribute
 hidden field in all forms

 Actions:
 Log
 Invalidate
 Redirect

http://www.owasp.org/index.php/CSRFGuard

AppSecurity swiss knife

 WebScarab
 JbroFuzz
 DirBuster
 OWASP Live CD
…..

17

18

19

20

OK, but I need more….

 Code Review Guide
 Testing Guide
 Building Guide
 OWASP ASVS
 OpenSAMM
 ……

21

OWASP AppSec Guides

 Free and open source
 Cheap printed copies
 Covers all critical

security controls
 Hundreds of expert

authors
 All aspects of

application security

22

4 guides

23

Building Guide Code Review Guide Testing Guide

Application Security Desk Reference (ASDR)

(c)2010 Sébastien GIORIA

OWASP Application Security Verification Std

 Standard for verifying
the security of web
applications

 Four levels
 Automated
 Manual
 Architecture
 Internal

24

OWASP Software Assurance Maturity Model

25

Want More OWASP?

  OWASP .NET Project
  OWASP ASDR Project
  OWASP AntiSamy Project
  OWASP AppSec FAQ Project
  OWASP Application Security Assessment Standards Project
  OWASP Application Security Metrics Project
  OWASP Application Security Requirements Project
  OWASP CAL9000 Project
  OWASP CLASP Project
  OWASP CSRFGuard Project
  OWASP CSRFTester Project
  OWASP Career Development Project
  OWASP Certification Criteria Project
  OWASP Certification Project
  OWASP Code Review Project
  OWASP Communications Project
  OWASP DirBuster Project
  OWASP Education Project
  OWASP Encoding Project
  OWASP Enterprise Security API
  OWASP Flash Security Project
  OWASP Guide Project
  OWASP Honeycomb Project
  OWASP Insecure Web App Project
  OWASP Interceptor Project

  OWASP JBroFuzz
  OWASP Java Project
  OWASP LAPSE Project
  OWASP Legal Project
  OWASP Live CD Project
  OWASP Logging Project
  OWASP Orizon Project
  OWASP PHP Project
  OWASP Pantera Web Assessment Studio Project
  OWASP SASAP Project
  OWASP SQLiX Project
  OWASP SWAAT Project
  OWASP Sprajax Project
  OWASP Testing Project
  OWASP Tools Project
  OWASP Top Ten Project
  OWASP Validation Project
  OWASP WASS Project
  OWASP WSFuzzer Project
  OWASP Web Services Security Project
  OWASP WebGoat Project
  OWASP WebScarab Project
  OWASP XML Security Gateway Evaluation Criteria Project
  OWASP on the Move Project

26

Copyright © The OWASP Foundation
Permission is granted to copy, distribute and/or modify this document
under the terms of the OWASP License.

The OWASP Foundation
http://www.owasp.org/

Top10 Risk in AppSecurity

Also known as the OWASP Top10 2010

27

1st Step
Determine if I’m in the right talk

28

My Application will be hacked ! Let Me take
you on the
right way 29

Your
Application

will be
Hacked ;)

Your
Application

been
Hacked

YES

NO

NO

YES

Don’t be the next

30

©
 R

an
da

l M
un

ro
e

(x
kc

d.
co

m
)

SQL Injection – Illustrated

Fi
re

w
al

l

Hardened OS

Web Server

App Server

Fi
re

w
al

l

D
at

ab
as

es

Le
ga

cy
 S

ys
te

m
s

W
eb

 S
er

vi
ce

s
D

ire
ct

or
ie

s
H

um
an

 R
es

rc
s

B
ill

in
g

Custom Code

APPLICATION
ATTACK

N
et

w
or

k
La

ye
r

A
pp

lic
at

io
n

La
ye

r

A
cc

ou
nt

s
Fi

na
nc

e
A

dm
in

is
tra

tio
n

Tr
an

sa
ct

io
ns

C

om
m

un
ic

at
io

n
K

no
w

le
dg

e
M

gm
t

E-
C

om
m

er
ce

B

us
. F

un
ct

io
ns

HTTP
request

SQL
query

DB Table

HTTP
response

"SELECT * FROM
accounts WHERE

acct=‘’ OR
1=1--’"

1. Application presents a form to
the attacker
2. Attacker sends an attack in the
form data
3. Application forwards attack to
the database in a SQL query

Account Summary

Acct:5424-6066-2134-4334
Acct:4128-7574-3921-0192
Acct:5424-9383-2039-4029
Acct:4128-0004-1234-0293

4. Database runs query containing
attack and sends encrypted results
back to application

5. Application decrypts data as
normal and sends results to the user

Account:

 SKU:

Account:

 SKU:

A1 – Injection

• Tricking an application into including unintended commands in the data
sent to an interpreter

Injection means…

• Take strings and interpret them as commands
• SQL, OS Shell, LDAP, XPath, Hibernate, etc…

Interpreters…

• Many applications still susceptible (really don’t know why)
• Even though it’s usually very simple to avoid

SQL injection is still quite common

• Usually severe. Entire database can usually be read or modified
• May also allow full database schema, or account access, or even OS level

access

Typical Impact

A1 – Avoid Injection Flaws

 Recommendations
1.  Avoid the interpreter entirely, or
2.  Use an interface that supports bind variables (e.g., prepared

statements, or stored procedures),
  Bind variables allow the interpreter to distinguish between code and

data

3.  Encode all user input before passing it to the interpreter
 Always perform ‘white list’ input validation on all user supplied

input
 Always minimize database privileges to reduce the impact of a

flaw

 References
 For more details, read the new http://www.owasp.org/index.php/

SQL_Injection_Prevention_Cheat_Sheet

What's going on?

34

What's going on?

35

Good Site (www.leboncoin.fr)

Bad Site (ha.ckers.fr

A2 – Cross-Site Scripting (XSS)

• Raw data from attacker is sent to an innocent user’s browser

Occurs any time…

• Stored in database
• Reflected from web input (form field, hidden field, URL, etc…)
• Sent directly into rich JavaScript client

Raw data…

• Try this in your browser – javascript:alert(document.cookie)

Virtually every web application has this problem

• Steal user’s session, steal sensitive data, rewrite web page, redirect user to
phishing or malware site

• Most Severe: Install XSS proxy which allows attacker to observe and direct
all user’s behavior on vulnerable site and force user to other sites

Typical Impact

(AntiSamy)

A2 – Avoiding XSS Flaws

 Recommendations
 Eliminate Flaw

  Don’t include user supplied input in the output page

 Defend Against the Flaw
  Primary Recommendation: Output encode all user supplied input
 (Use OWASP’s ESAPI to output encode:
 http://www.owasp.org/index.php/ESAPI
  Perform ‘white list’ input validation on all user input to be included in

page
  For large chunks of user supplied HTML, use OWASP’s AntiSamy to

sanitize this HTML to make it safe
 See: http://www.owasp.org/index.php/AntiSamy

 References
 For how to output encode properly, read the new http://

www.owasp.org/index.php/XSS_(Cross Site Scripting) Prevention Cheat Sheet

Safe Escaping Schemes in Various HTML Execution
Contexts

HTML Style Property Values
(e.g., .pdiv a:hover {color: red; text-decoration:

underline})

JavaScript Data
(e.g., <script> some javascript </script>)

HTML Attribute Values
(e.g., <input name='person' type='TEXT'

value='defaultValue'>)

HTML Element Content
(e.g., <div> some text to display </div>)

URI Attribute Values
(e.g., <a href="javascript:toggle('lesson')")

#4: All non-alphanumeric < 256 \HH
ESAPI: encodeForCSS()

#3: All non-alphanumeric < 256 \xHH
ESAPI: encodeForJavaScript()

#1: (&, <, >, ") &entity; (', /) &#xHH;
ESAPI: encodeForHTML()

#2: All non-alphanumeric < 256 &#xHH
ESAPI: encodeForHTMLAttribute()

#5: All non-alphanumeric < 256 %HH
ESAPI: encodeForURL()

ALL other contexts CANNOT include Untrusted Data
Recommendation: Only allow #1 and #2 and disallow all others

See: www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet for more
details

What's going on?

39

Hacker

Customer

GET /login.jsp?SESSIONID=123456789

OK SESSIONID=12345679 Authenticated

A3 – Broken Authentication and Session
Management

• Means credentials have to go with every request
• Should use SSL for everything requiring authentication

HTTP is a “stateless” protocol

• SESSION ID used to track state since HTTP doesn’t
• and it is just as good as credentials to an attacker

• SESSION ID is typically exposed on the network, in browser, in logs, …

Session management flaws

• Change my password, remember my password, forgot my password, secret
question, logout, email address, etc…

Beware the side-doors

• User accounts compromised or user sessions hijacked

Typical Impact

A3 – Avoiding Broken Authentication and
Session Management

 Verify your architecture
 Authentication should be simple, centralized, and standardized
 Use the standard session id provided by your container
 Be sure SSL protects both credentials and session id at all times

 Verify the implementation
 Forget automated analysis approaches
 Check your SSL certificate
 Examine all the authentication-related functions
 Verify that logoff actually destroys the session
 Use OWASP’s WebScarab to test the implementation

What's going on?

A4 – Insecure Direct Object References

• This is part of enforcing proper “Authorization”, along with
A7 – Failure to Restrict URL Access

How do you protect access to your data?

• Only listing the ‘authorized’ objects for the current user, or
• Hiding the object references in hidden fields
• … and then not enforcing these restrictions on the server side
• This is called presentation layer access control, and doesn’t work
• Attacker simply tampers with parameter value

A common mistake …

• Users are able to access unauthorized files or data

Typical Impact

A4 – Avoiding Insecure Direct Object
References

 Eliminate the direct object reference
 Replace them with a temporary mapping value (e.g. 1, 2, 3)
 ESAPI provides support for numeric & random mappings

  IntegerAccessReferenceMap & RandomAccessReferenceMap

 Validate the direct object reference
 Verify the parameter value is properly formatted
 Verify the user is allowed to access the target object

  Query constraints work great!

 Verify the requested mode of access is allowed to the target
object (e.g., read, write, delete)

http://app?file=1
Report123.xls

http://app?id=7d3J93
Acct:9182374 http://app?id=9182374

http://app?file=Report123.xls
Access

Reference
Map

What's going on?

45

Surf the Web

A5 – Cross Site Request Forgery (CSRF)

• An attack where the victim’s browser is tricked into issuing a command to
a vulnerable web application

• Vulnerability is caused by browsers automatically including user
authentication data (session ID, IP address, Windows domain credentials,
…) with each request

Cross Site Request Forgery

• What if a hacker could steer your mouse and get you to click on links in
your online banking application?

• What could they make you do?

Imagine…

• Initiate transactions (transfer funds, logout user, close account)
• Access sensitive data
• Change account details

Typical Impact

CSRF Vulnerability Pattern

 The Problem
 Web browsers automatically include most credentials with each

request
 Even for requests caused by a form, script, or image on another site

 All sites relying solely on automatic
credentials are vulnerable!
 (almost all sites are this way)

 Automatically Provided Credentials
 Session cookie
 Basic authentication header
 IP address
 Client side SSL certificates
 Windows domain authentication

A5 – Avoiding CSRF Flaws

  Add a secret, not automatically submitted, token to ALL sensitive requests
 This makes it impossible for the attacker to spoof the request

  (unless there’s an XSS hole in your application)
 Tokens should be cryptographically strong or random

  Options
 Store a single token in the session and add it to all forms and links

  Hidden Field: <input name="token" value="687965fdfaew87agrde"
type="hidden"/>

  Single use URL: /accounts/687965fdfaew87agrde
  Form Token: /accounts?auth=687965fdfaew87agrde …

 Beware exposing the token in a referer header
  Hidden fields are recommended

 Can have a unique token for each function
  Use a hash of function name, session id, and a secret

 Can require secondary authentication for sensitive functions
(e.g., eTrade)

  Don’t allow attackers to store attacks on your site
 Properly encode all input on the way out
 This renders all links/requests inert in most interpreters

See the new: www.owasp.org/index.php/CSRF_Prevention_Cheat_Sheet for
more details

What's going on?

49

A6 – Security Misconfiguration

• All through the network and platform
• Don’t forget the development environment

Web applications rely on a secure foundation

• Think of all the places your source code goes
• Security should not require secret source code

Is your source code a secret?

• All credentials should change in production

CM must extend to all parts of the application

• Install backdoor through missing network or server patch
• XSS flaw exploits due to missing application framework patches
• Unauthorized access to default accounts, application functionality or data,

or unused but accessible functionality due to poor server configuration

Typical Impact

A6 – Avoiding Security Misconfiguration

 Verify your system’s configuration management
 Secure configuration “hardening” guideline

  Automation is REALLY USEFUL here

 Must cover entire platform and application
 Keep up with patches for ALL components

  This includes software libraries, not just OS and Server applications

 Analyze security effects of changes

 Can you “dump” the application configuration
 Build reporting into your process
 If you can’t verify it, it isn’t secure

 Verify the implementation
 Scanning finds generic configuration and missing patch problems

What's going on?

52

A7 – Failure to Restrict URL Access

• This is part of enforcing proper “authorization”, along with
A4 – Insecure Direct Object References

How do you protect access to URLs (pages)?

• Displaying only authorized links and menu choices
• This is called presentation layer access control, and doesn’t work
• Attacker simply forges direct access to ‘unauthorized’ pages

A common mistake …

• Attackers invoke functions and services they’re not authorized for
• Access other user’s accounts and data
• Perform privileged actions

Typical Impact

A7 – Avoiding URL Access Control Flaws

  For each URL, a site needs to do 3 things
 Restrict access to authenticated users (if not public)
 Enforce any user or role based permissions (if private)
 Completely disallow requests to unauthorized page types (e.g., config files, log

files, source files, etc.)

  Verify your architecture
 Use a simple, positive model at every layer
 Be sure you actually have a mechanism at every layer

  Verify the implementation
 Forget automated analysis approaches
 Verify that each URL in your application is protected by either

  An external filter, like Java EE web.xml or a commercial product
  Or internal checks in YOUR code – Use ESAPI’s isAuthorizedForURL() method

 Verify the server configuration disallows requests to unauthorized file types
 Use WebScarab or your browser to forge unauthorized requests

What's going on?

55

A8 – Unvalidated Redirects and Forwards

• And frequently include user supplied parameters in the destination URL
• If they aren’t validated, attacker can send victim to a site of their

choice

Web application redirects are very common

• They internally send the request to a new page in the same application
• Sometimes parameters define the target page
• If not validated, attacker may be able to use unvalidated forward to

bypass authentication or authorization checks

Forwards (aka Transfer in .NET) are common too

• Redirect victim to phishing or malware site
• Attacker’s request is forwarded past security checks, allowing

unauthorized function or data access

Typical Impact

A8 – Avoiding Unvalidated Redirects and
Forwards
  There are a number of options

1.  Avoid using redirects and forwards as much as you can
2.  If used, don’t involve user parameters in defining the target URL
3.  If you ‘must’ involve user parameters, then either

a)  Validate each parameter to ensure its valid and authorized for the current user, or
b)  (preferred) – Use server side mapping to translate choice provided to user with actual

target page

  Defense in depth: For redirects, validate the target URL after it is calculated to
make sure it goes to an authorized external site

  ESAPI can do this for you!!
  See: SecurityWrapperResponse.sendRedirect(URL)
  http://owasp-esapi-java.googlecode.com/svn/trunk_doc/org/owasp/esapi/filters/

SecurityWrapperResponse.html#sendRedirect(java.lang.String)

  Some thoughts about protecting Forwards
  Ideally, you’d call the access controller to make sure the user is authorized

before you perform the forward (with ESAPI, this is easy)
 With an external filter, like Siteminder, this is not very practical
 Next best is to make sure that users who can access the original page are ALL

authorized to access the target page.

What's going on?

58

A9 – Insecure Cryptographic Storage

• Failure to identify all sensitive data
• Failure to identify all the places that this sensitive data gets stored

• Databases, files, directories, log files, backups, etc.
• Failure to properly protect this data in every location

Storing sensitive data insecurely

• Attackers access or modify confidential or private information
• e.g, credit cards, health care records, financial data (yours or your

customers)
• Attackers extract secrets to use in additional attacks
• Company embarrassment, customer dissatisfaction, and loss of trust
• Expense of cleaning up the incident, such as forensics, sending apology

letters, reissuing thousands of credit cards, providing identity theft
insurance

• Business gets sued and/or fined

Typical Impact

A9 – Avoiding Insecure Cryptographic
Storage

  Verify your architecture
  Identify all sensitive data
  Identify all the places that data is stored
  Ensure threat model accounts for possible attacks
  Use encryption to counter the threats, don’t just ‘encrypt’ the data

  Protect with appropriate mechanisms
  File encryption, database encryption, data element encryption

  Use the mechanisms correctly
  Use standard strong algorithms
  Generate, distribute, and protect keys properly
  Be prepared for key change

  Verify the implementation
  A standard strong algorithm is used, and it’s the proper algorithm for this situation
  All keys, certificates, and passwords are properly stored and protected
  Safe key distribution and an effective plan for key change are in place
  Analyze encryption code for common flaws

What's going on?

61

A10 – Insufficient Transport Layer
Protection

• Failure to identify all sensitive data
• Failure to identify all the places that this sensitive data is sent

• On the web, to backend databases, to business partners, internal
communications

• Failure to properly protect this data in every location

Transmitting sensitive data insecurely

• Attackers access or modify confidential or private information
• e.g, credit cards, health care records, financial data (yours or your

customers)
• Attackers extract secrets to use in additional attacks
• Company embarrassment, customer dissatisfaction, and loss of trust
• Expense of cleaning up the incident
• Business gets sued and/or fined

Typical Impact

A10 – Avoiding Insufficient Transport Layer
Protection
 Protect with appropriate mechanisms

 Use TLS on all connections with sensitive data
 Individually encrypt messages before transmission

 E.g., XML-Encryption
 Sign messages before transmission

 E.g., XML-Signature

 Use the mechanisms correctly
 Use standard strong algorithms (disable old SSL algorithms)
 Manage keys/certificates properly
 Verify SSL certificates before using them
 Use proven mechanisms when sufficient

  E.g., SSL vs. XML-Encryption
  See: http://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet for

more details

Summary

64

The OWASP Top Ten 2010

http://www.owasp.org/index.php/Top_10

Summary: How do you address these
problems?
 Develop Secure Code

 Follow the best practices in OWASP’s Guide to Building Secure Web
Applications
  http://www.owasp.org/index.php/Guide

 Use OWASP’s Application Security Verification Standard as a guide to
what an application needs to be secure
  http://www.owasp.org/index.php/ASVS

 Use standard security components that are a fit for your organization
  Use OWASP’s ESAPI as a basis for your standard components
  http://www.owasp.org/index.php/ESAPI

 Review Your Applications
 Have an expert team review your applications
 Review your applications yourselves following OWASP Guidelines

  OWASP Code Review Guide:
 http://www.owasp.org/index.php/Code_Review_Guide

  OWASP Testing Guide:
 http://www.owasp.org/index.php/Testing_Guide

Just click here http://www.owasp.org

67

Acknowledgements - Copyright

 I like to thank the Primary Project Contributors
 Aspect Security for sponsoring the project
 Jeff Williams (Author who conceived of and launched Top 10 in 2003)
 Dave Wichers (Author and current project lead)

 Antonio Fontes (OWASP Geneva Chapter) for some thoughts
on Top10

 You are free:
 To share (copy, distribute, transmit)
 To remix

 But only if:
 You use it for non-commercial purposes
 And you keep sharing your result the same way I did 68

