Online verifiable elections with Helios

Stéphane Glondu

LORIA (Inria, CNRS, Université de Lorraine)

Libre Software Meeting, Geneva July 10, 2012

Outline

Overview

Building a verifiable voting system

Security considerations

Conclusion

Elections are a security-sensitive process which is the cornerstone of modern democracy.

Electronic voting promises

- convenient, efficient and secure facility for recording and tallying votes
- for a variety of types of elections: from small committees or on-line communities...
 ...to public office (political) elections

Already used e.g. in Switzerland, France, USA...

Two main families of e-voting

Voting machines

- voters have to attend a polling station
- external authentication system (e.g. ID card)

Internet voting

- voters vote from home
- using their own computer

A trust issue

In many systems in use today...

- the whole procedure is secret
 - secret specification
 - closed source software and/or proprietary hardware
 - audit restricted to (some) (supposedly honest) experts
 - •
 - i.e. blind trust
- open source software/hardware is not enough!
 - the result should be verifiable independently
 - software should not matter
- people claim it's needed for security (security through obscurity)

A trust issue

Properties

- Fairness: the result corresponds to the votes
- Eligibility: only legitimate voters can vote, and only once
- Individual verifiability: a voter can verify that her vote was really counted
- Universal verifiability: everyone can verify that the published outcome really is the sum of all votes

Public ballots

Properties

- Fairness: the result corresponds to the votes
- Eligibility: only legitimate voters can vote, and only once
- Individual verifiability: a voter can verify that her vote was really counted
- Universal verifiability: everyone can verify that the published outcome really is the sum of all votes
- Privacy: the fact that someone voted in a particular way is not revealed to anyone else

Anonymized public ballots

Encrypted public ballots

Democratizing audits

- each voter is responsible for checking her receipt
- anyone (individual or organization) can audit the tally and verify the list of cast ballots

Verifiable elections

End-to-end verification

Public key encryption

Encryption with the public key and decryption with the private key.

Randomized encryption

Homomorphic encryption

 allows computations on encrypted messages without decrypting them

$${m_1}_{\sf pk} \times {m_2}_{\sf pk} = {m_1 + m_2}_{\sf pk}$$

$$g^{m_1} \times g^{m_2} = g^{m_1+m_2}$$

A concrete voting system Phase 1: voting

Bulletin Board

Alice	$\{v_A\}_{pk(S)}$	$v_A = 0$ or 1
Bob	$\{v_B\}_{pk(S)}$	$v_B = 0$ or 1

Phase 2: tallying using homomorphic encryption

$$\prod_{i=1}^{n} \{v_i\}_{pk(S)} = \{\sum_{i=1}^{n} v_i\}_{pk(S)}$$

Phase 3: decrypt the final result Only the final result needs to be decrypted!

pk(S): public key of the election

Cheating voters

a malicious voter can cheat:

Result:

$$\{ v_A + v_B + v_C + v_D + \cdots \}_{\mathsf{pk}(S)} \text{ Result:} \\ \{ v_A + v_B + v_C + 100 + \cdots \}_{\mathsf{pk}(S)} \text{ Result:} \\ \{ v_A + v_B + v_C + v_D + \cdots \}_{\mathsf{pk}(S)}$$

- hence, each voter must prove that her vote is 0 or 1 without revealing it
- it is possible with zero-knowledge proofs

Cheating authorities

malicious election authorities can cheat:

Result: $\{v_A + v_B + v_C + v_D + \cdots\}_{pk(S)}$

Bulletin Board

Alice	$\{v_A\}_{pk(S)}$	$v_A = 0$ or 1
Bob	$\{v_B\}_{pk(S)}$	$v_B = 0$ or 1
Chris	$\{v_C\}_{pk(S)}$	$v_C = 0$ or 1

can be mitigated by use of threshold decryption

Threshold decryption

Helios

Voters & Ballot Trackin...

http://vote.heliosvoting.org/

Edit View H	igtory gookmarks	Ballob Tracking Center for Helios Demo - Helios - Nozilia Firefor Tools Help	
⊕ • C (🛛 🛕 🗐 http://	vote heliosvoting.org/helios/elections/x083298c-ef3c-11df-88ee-123 🗇 🔣 🖌 Google	۵ 🖉
		helios	
Heli	ios Demo —	Voters and Ballot Tracking Center [back to election]	
Regist	ration is Open.		
searc	h	16aX3	
3687C	h	seach.	
2 cast Voters	t votes	(seec)	
2 casi Voters	t votes i 1 - 3 (of 3) Name	Smart Ballet Tracker	
2 cash Voters	h: t votes i 1 - 3 (of 3) Name ien Smyth	kanat Babbi Tracker	
2 cash Voters S 5 S M	h: t votes 1 - 3 (of 3) Name en Smyth tichael Rusinowitch	A Smart Balat Tacker - - - - - - - - - -	

- developed by B. Adida et al
- used for:
 - university elections
 (Louvain, Princeton)
 - IACR board election

libre version:

https://github.com/{benadida,glondu}/helios-server

- better thought as an open specification for electronic voting
 - actively studied by the scientific communiyt

Disclaimer

The security of Helios relies on the assumption that the voter's computer can be trusted.

- Not suitable for political elections A corrupted machine may:
 - leak the choice of the voter
 - vote for a different candidate

The same applies to systems currently deployed for political elections!

- concrete attack by Laurent Grégoire on the system used by the French abroad
- Suitable for medium issue elections:
 - professional elections
 - scientific councils, students representatives, etc.
- To be compared with remote voting:
 - better guarantees than vote by mail

Guaranteed properties

- Fairness: the result corresponds to the votes
- Eligibility (partial): voters vote only once
- Individual verifiability: a voter can verify that her vote was really counted
- Universal verifiability: everyone can verify that the published outcome really is the sum of all votes
- Privacy: the fact that someone voted in a particular way is not revealed to anyone else

Mitigation for questionable properties

- LiveCD with minimal software and certificates
 - and documentation on how to build it by oneself
- voter-initiated audit before casting
 - using third-party software and/or hardware
 - possibly home-made
- honeypots

Room for improvement

- resistance to ballot stuffing
- coercion resistance, ticket freeness
- everlasting privacy
- mixnets
- elliptic curve cryptography

Conclusion

Electronic voting is possible without *blind* trust...

... but it is not ready to replace "traditional" voting

Questions?

Contact:

- helios-voting@googlegroups.com
- steph@glondu.net

Slides under CC-BY-SA 3.0. Acknowledgements:

- Ben Adida, http://ben.adida.net/
- Véronique Cortier