
Containers, Docker, 
and Security: 

State of the Union

1 / 35



1 / 35

Who am I?
Jérôme Petazzoni (@jpetazzo)

French software engineer living in California

Joined Docker (dotCloud) more than 4 years ago 
(I was at Docker before it was cool!)

I built and scaled the dotCloud PaaS 
(millions of containers, no known security issues)

I learned a few things about running containers 
(in production)

2 / 35

https://twitter.com/jpetazzo


2 / 35

Outline
Yesterday

Today

Tomorrow

3 / 35



3 / 35

Yesterday

4 / 35



4 / 35

Containers and Security yesterday
"Is it safe to run applications in containers?"

5 / 35



5 / 35

Containers and Security yesterday
"Is it safe to run applications in containers?"

really meant

"Can one container break out, and into another?"

6 / 35



6 / 35

Containers and Security yesterday
"Is it safe to run applications in containers?"

really meant

"Can one container break out, and into another?"

Main concern: isolation

7 / 35



7 / 35

What was the answer?

8 / 35



8 / 35

What was the answer?

9 / 35



9 / 35

What was the answer?
"It's complicated"

Long list of recommendations

some were easy 
(and automatically enforced by Docker)

some were not obvious 
(and had to be enabled manually)

some were hard to deploy 
(or required missing kernel features)

10 / 35



10 / 35

How is this different today?
People still ask about container isolation

Much more frequently, they ask about 
image security and provenance

They want to know:

if docker pull debian is what it claims to be

if jpetazzo/dind has vulnerabilities

if a given image has been vetted by their sec team

11 / 35



11 / 35

Why has it changed?
Who cares about container isolation?

hosting providers (more density = more $$$)
PAAS (for rapid deployment; on-demand activation)

→ early adopters

Who doesn't care about container isolation?

people who use VMs only because autoscaling
people who would put multiple components per
machine anyway

→ second wave of users

12 / 35



12 / 35

Today

13 / 35



13 / 35

Docker and Containers Security Today
Improving what we had yesterday 
(fine-grained permissions, immutable containers)

Addressing new challenges 
(provenance, content verification, notary)

Defense in depth 
(containers + VM)

The infosec mindset 
(better upgrades, security benchmarks, policies)

14 / 35



14 / 35

Finer-grained permissions
Per-container ulimit

Capability reduction 
--cap-drop / --cap-add 
e.g.: --cap-add net_admin

Device access restrictions 
--device (better than --privileged!)

Improved handling of LSM 
(SELinux, AppArmor)

15 / 35



15 / 35

Smaller attack surface
Hardware management done on the host 
(no kernel, drivers, device handling... in containers)

Package management is optional 
(once a container is built, it doesn't need to be changed)

Minimal distros can be used 
(e.g. buildroot, Alpine Linux...)

Less software = less risk

16 / 35



16 / 35

Immutable containers
docker run --read-only 
(makes it impossible to entrench in a container)

Helps with vulnerability detection 
(audit can be performed on offline images)

Even without --read-only flag:

copy-on-write prevents changes from being permanent

break a container when hacking it → it gets recycled

docker diff allows easy audit of changes

17 / 35



17 / 35

Image provenance
How can I trust docker pull debian?

I must trust upstream 
(i.e. Debian and whoever maintains the image)

I must trust Docker Inc. 
(operator of the Hub)

I must trust the transport 
(between the Hub and my Docker host)

18 / 35



18 / 35

Image provenance
How can I trust docker pull debian?

I must trust upstream 
(i.e. Debian and whoever maintains the image)

I must trust Docker Inc. 
(operator of the Hub)

I must trust the transport 
(between the Hub and my Docker host)

That's a lot of trust

19 / 35



19 / 35

"I don't want to trust anybody!"
If you don't trust upstream, you have to ...

stop using apt-get and yum with public repos

rebuild everything from source

verify source integrity 
(full audit + review all changes)

If you don't trust Docker Inc., you probably should ...

audit the whole Docker Engine code

audit every single patch that goes into Docker 
(if you can do that ... we're looking for reviewers)

20 / 35



20 / 35

Security reminder
It's OK to be paranoid, but beware of:

Bumps in the carpet 
(moving a problem rather than solving it)

Usability 
(if security makes it hard/impossible to work, 
people will work around it!)

Tinfoil hats

21 / 35



21 / 35

Can we trust the transport?
Registry v1 protocol had serious issues:

arbitrary layer IDs

no integrity check 
(other than TLS transport integrity)

Registry v2 protocol has:

content-based layer IDs

signed image manifests

Is that enough?

22 / 35



22 / 35

Notary: a better trust framework
Sign content with offline key

Distribute signed content on (potentially insecure) servers

Based on TUF (The Update Framework)

Some features:

don't fail hard when a key is compromised

guarantee freshness

trust thresholds (=Red October for signed content)

leverage existing (insecure) transport and mirrors

Launched at DockerCon a few weeks ago!
23 / 35

https://github.com/cloudflare/redoctober
http://theupdateframework.com/


23 / 35

Defense in depth
So, VM or containers?

24 / 35



24 / 35

Defense in depth
So, VM or containers?

VM and containers!

25 / 35



25 / 35

Defense in depth
So, VM or containers?

VM and containers!

Reduce number of VMs 
(when security perimeter allows it)

Colocated containers are safer than colocated processes

Malicious code has to escape both layers

Docker provides an extra layer of isolation

Applications are safer with containers than without

26 / 35



26 / 35

The infosec mindset
Better upgrades

Accurate, actionable security benchmarks

Clear, sensible security policies

27 / 35



27 / 35

Better upgrades
Dockerfile = easy, fast, reliable builds and rebuilds

"But now I have 1000s of container images to upgrade!"

Yes, but that's way better than the 100s of server images
that you had before

The organizational risk is lower 
(reliable rollbacks)

28 / 35



28 / 35

Security benchmarks
CIS (Center of Internet Security) Docker Benchmark

Docker Bench: automated assessment tool to check
compliance https://dockerbench.com

29 / 35

https://benchmarks.cisecurity.org/tools2/docker/CIS_Docker_1.6_Benchmark_v1.0.0.pdf
https://dockerbench.com/


29 / 35

Policies
Docker Inc. (the company) and the Docker Project (open
source) have clear security guidelines

Mandatory code reviews (see CONTRIBUTING.md) to
ensure quality of code base

Quarterly security audits and pen tests of our
infrastructure

We support responsible disclosure

30 / 35

https://github.com/docker/docker/blob/master/CONTRIBUTING.md


30 / 35

Tomorrow

31 / 35



31 / 35

Container security in the future
Personal predictions - not Docker Inc.'s roadmap!

32 / 35



32 / 35

Container security in the future
Personal predictions - not Docker Inc.'s roadmap!

Offline image audit

Hardening of immutable containers (noexec, nosuid)

Better GRSEC, PAX, LSM integration

User namespaces (eventually!)

Better default seccomp profiles

33 / 35



33 / 35

Resources
Docker security page

Docker security presentation at DockerCon 2015 SF

Docker Security CheatSheet

Notary on GitHub

Docker Bench for Security

34 / 35

https://www.youtube.com/watch?t=426&v=8mUm0x1uy7c
https://github.com/konstruktoid/Docker/blob/master/Security/CheatSheet.md
https://github.com/docker/notary
https://dockerbench.com/
https://www.docker.com/docker-security


34 / 35

Thanks! 
Questions?

@jpetazzo 
@docker

35 / 35

https://twitter.com/jpetazzo
https://twitter.com/docker

