Containers, Docker,
and Security:

State of the Union



Who am I?

e Jerome Petazzoni (@jpetazzo)
e French software engineer living in California

e Joined Docker (dotCloud) more than 4 years ago
(I was at Docker before it was cool!)

I built and scaled the dotCloud PaaS
(millions of containers, no known security issues)

e ] learned a few things about running containers
(in production)


https://twitter.com/jpetazzo

Outline

e Yesterday
e Today

e Tomorrow



Yesterday



Containers and Security yesterday

e "[s it safe to run applications in containers?"



Containers and Security yesterday

e "Is it safe to run applications in containers?"
really meant

"Can one container break out, and into another?"



Containers and Security yesterday

e "[s it safe to run applications in containers?"
really meant
"Can one container break out, and into another?"

e Main concern: isolation



What was the answer?



What was the answer?

Docker has changed its security status to

It's complicated




What was the answer?

e "It's complicated"
e Long list of recommendations

o some were easy
(and automatically enforced by Docker)

o some were not obvious
(and had to be enabled manually)

o some were hard to deploy
(or required missing kernel features)



How is this different today?

e People still ask about container isolation

e Much more frequently, they ask about
Image security and provenance

e They want to know:
o if docker pull debianis what it claims to be
o if jpetazzo/dind has vulnerabilities

o if a given image has been vetted by their sec team



Why has it changed?

e Who cares about container isolation?

o hosting providers (more density = more $$$)
o PAAS (for rapid deployment; on-demand activation)

- early adopters
e Who doesn't care about container isolation?

o people who use VMs only because autoscaling
o people who would put multiple components per
machine anyway

— second wave of users



Today



Docker and Containers Security Today

e Improving what we had yesterday
(fine-grained permissions, immutable containers)

e Addressing new challenges
(provenance, content verification, notary)

e Defense in depth
(containers + VM)

e The infosec mindset
(better upgrades, security benchmarks, policies)



Finer-grained permissions

e Per-container ulimit

e Capability reduction
--cap-drop/ --cap-add
e.g.. --cap-add net_admin

e Device access restrictions
- -device (better than - -privileged!)

e Improved handling of LSM
(SELinux, AppArmor)



Smaller attack surface

e Hardware management done on the host
(no kernel, drivers, device handling... in containers)

e Package management is optional
(once a container is built, it doesn't need to be changed)

e Minimal distros can be used
(e.g. buildroot, Alpine Linux...)

e [.ess software =less risk



Immutable containers

® docker run --read-only
(makes it impossible to entrench in a container)

e Helps with vulnerability detection
(audit can be performed on offline images)

e Even without --read-only flag:
o copy-on-write prevents changes from being permanent
o break a container when hacking it - it gets recycled

o docker diff allows easy audit of changes



Image provenance

e How can I trust docker pull debian?

o I must trust upstream
(i.e. Debian and whoever maintains the image)

o I must trust Docker Inc.
(operator of the Hub)

o I must trust the transport
(between the Hub and my Docker host)



Image provenance

e How can I trust docker pull debian?

o I must trust upstream
(i.e. Debian and whoever maintains the image)

o I must trust Docker Inc.
(operator of the Hub)

o I must trust the transport
(between the Hub and my Docker host)

e That's a lot of trust



"| don't want to trust anybody!

e If youdon't trust upstream, you have to ...
o stop using apt-get and yum with public repos
o rebuild everything from source

o verify source integrity
(full audit + review all changes)

e If you don't trust Docker Inc., you probably should ...
o audit the whole Docker Engine code

o audit every single patch that goes into Docker
(if you can do that ... we're looking for reviewers)



Security reminder

It's OK to be paranoid, but beware of:

e Bumps in the carpet
(moving a problem rather than solving it)

e Usability
(if security makes it hard/impossible to work,
people will work around it!)

e Tinfoil hats



(an we trust the transport?

e Registry v1 protocol had serious issues:
o arbitrary layer IDs

o no integrity check
(other than TLS transport integrity)

e Registry v2 protocol has:
o content-based layer IDs
o signed image manifests

Is that enough?



Notary: a better trust framework

e Sign content with offline key
e Distribute signed content on (potentially insecure) servers
e Based on TUF (The Update Framework)
e Some features:
o don't fail hard when a key is compromised
o guarantee freshness
o trust thresholds (=Red October for signed content)
o leverage existing (insecure) transport and mirrors

Launched at DockerCon a few weeks ago!


https://github.com/cloudflare/redoctober
http://theupdateframework.com/

Defense in depth

So, VM or containers?



Defense in depth

So, VM or containers?

VM and containers!



Defense in depth

So, VM or containers?
VM and containers!

e Reduce number of VMs
(when security perimeter allows it)

e Colocated containers are safer than colocated processes
e Malicious code has to escape both layers
e Docker provides an extra layer of isolation

e Applications are safer with containers than without



The infosec mindset

e Better upgrades
e Accurate, actionable security benchmarks

e (Clear, sensible security policies



Better upgrades

e Dockerfile = easy, fast, reliable builds and rebuilds

e "But now I have 1000s of container images to upgrade!”

Yes, but that's way better than the 100s of server images
that you had before

e The organizational risk is lower
(reliable rollbacks)



Security benchmarks

e CIS (Center of Internet Security) Docker Benchmark

e Docker Bench: automated assessment tool to check
compliance https://dockerbench.com


https://benchmarks.cisecurity.org/tools2/docker/CIS_Docker_1.6_Benchmark_v1.0.0.pdf
https://dockerbench.com/

Policies

e Docker Inc. (the company) and the Docker Project (open
source) have clear security guidelines

e Mandatory code reviews (see CONTRIBUTING.md) to
ensure quality of code base

e Quarterly security audits and pen tests of our
infrastructure

e We support responsible disclosure


https://github.com/docker/docker/blob/master/CONTRIBUTING.md

Tomorrow



Container security in the future

Personal predictions - not Docker Inc.'s roadmap!



Container security in the future

Personal predictions - not Docker Inc.'s roadmap!
e Offline image audit
e Hardening of immutable containers (noexec, nosuid)
e Better GRSEC, PAX, LSM integration

e User namespaces (eventually!)

Better default seccomp profiles



Resources

e Docker security page

e Docker security presentation at DockerCon 2015 SF
e Docker Security CheatSheet

e Notary on GitHub

e Docker Bench for Security


https://www.youtube.com/watch?t=426&v=8mUm0x1uy7c
https://github.com/konstruktoid/Docker/blob/master/Security/CheatSheet.md
https://github.com/docker/notary
https://dockerbench.com/
https://www.docker.com/docker-security

Thanks!
Questions?

@)petazzo
@docRer


https://twitter.com/jpetazzo
https://twitter.com/docker

