Verified Boot and Free Software:
Reconciling Freedom and Security

Paul Kocialkowski
contact@paulk.fr

Monday July 4t" 2016

Introducing Verified Boot and Related Issues

Introducing Verified Boot and Related Issues

Bootup Process

Basic Input/Output System:
e 1980s:

e Basic hardware initialization
e Operating system load
e BIOS interrupt calls (used by CP/M, DOS)
e Purpose: hardware abstraction
e Read-only memory
e 1990s:
e |ncreasing hardware complexity
e Drivers in operating systems, initialization only
e Read/write memory (updates)
e 2000s:
e Run-time services (SMM/SMI, ACPI)

o Unified Extensible Firmware Interface (UEFI)
e Back to hardware abstraction

hardware reset

l,spi flash

bootblock reset vector: OxfFfffffO

lspi fbdh cccoccocccccocooos

romstage cache as ram

lspi fbdh) ccococcocccccocooos

smm handlers €<——— ramstage ram

lspi flash

hdd
payload bootloader

smi lhdd

kernel hdd

hardware reset

lhardwired silicon

bootrom hardwired silicon
lvarious _______________
spl sram
lvarious _______________
peci €= === ===~~~ bootloader ram
A
\
\ . N
\ various "~y
AY NP
call < _ 1 :
~ kernel | tee i
I
_————— = — — — — 1
™ ~ -

Need for trusted run-time software:

e Operating system is flawed
e Privileged operations, hardware access

e Sensitive operations (privacy/security)

Implementing a trusted environment:
e Independent or setup by bootup software
¢ Cooperation with the platform (e.g. TrustZone)
e Privileged mode, interfacing (e.g. SMC)

Introducing Verified Boot and Related Issues

Software Freedom

Bootup software considerations:

e Precedence over the system
e Runs during the system lifetime
Loads the TEE

e Great control, abilities and user data access

Hardware initialization knowledge

Associated issues:
e Trust and control:

e Audit (weaknesses, backdoors)
e Bug fix (delays, EOL)
e User modification

e Restrictions

e Access to knowledge

Guarantees: basic freedoms
0. Run for any purpose
1. Study and modify
2. Redistribution

3. Redistribution of modifications

Free software is a hard requirement!

Bootrom (ARM):
e Read-only: hardwired

e Always non-free (hardware design)

Free bootup software projects:
e Coreboot
e U-Boot, Barebox
e Libreboot

Usual non-free components:
e x86: Option ROM/VGA BIOS, CPU microcodes
e Intel x86: FSP, MRC, ME
e AMD x86: IMC, SMU, PSP

e Various firmwares (xHCI, ethernet, ...)

Introducing Verified Boot and Related Issues

Bootup Software Verification

Security approaches distinction:
e Verified boot: to boot or not to boot

e Measured boot: state indication

Verified boot rationale:
o Read/write bootup software
e Attack surface, compromisation

e Chain of trust up to the system, handlers

Design implications:
e Early bootup software must be trusted
e Next stage validation: signatures

e Read-only signatures

Pin-driven write-protect: flashrom/board_enable.c:

° Easy to flnd out ?tatic int intel_piix4_gpo27_lower (void)

° Flashrom board enables return intel_piix4_gpo_set (27, 0);
Platform-based approaches:
¢ Platform SPI access/write disable

e Protected Ranges (PRx)

Pitfalls:
e Privileged access (SMM)
e Internal controller access (ME, IMC)
e External access

e Platform-specific logic

Secure boot implementations:

e Bootloader or kernel verification
e Ships with verification keys

e Assumes it's not compromised

User control:
e Secure boot disable?

e Replacing keys?

Strong root of trust:
e Keys in OTP memory

e Bootrom enforcing verification

Motivations:
e Multiple read/write storage

e Reliable root of trust

Implementations:
e ARM platforms
e Intel Bootguard
e Intel TXT ACM (dynamic root of trust)

Introducing Verified Boot and Related Issues

Software Freedom lssues

Issues for freedom:

e Free bootup software is impossible!
e Free TEE software is impossible!

o Free kernel is impossible!

Implications for privacy/security:
e No control, no choice for trust

e (Un)intentional weaknesses
e Ability to compromise the system, exfiltrate data:

e At boot time
e At run time: TEE, SMM/SMI, ACPI, PECI

Neither freedom, nor privacy/security :(

Usual scenario (Android):
e Verified SPL and bootloader
e Verified TEE
e Chain of trust break

Story time:
e LG Optimus Black
e Google Pixel C

Rationale? Anyone? It's pronounced DRM.

Tivoization:

o Free, copyleft bootup software

e Modified versions release

e Signed binaries for verified boot

Case study:

e Samsung Galaxy Tab 2
e X-Loader SPL

Classification Model Version Source Code Announcement Inquiry
Mobile Phane GT-PS100 PSLO0XXDN... GT-P5100_JB_Opensource_Update3.zip B =
Mobile Phane GT-PS100 GT-P5100_JB_Opensource_Update2 zip @ =
Mobile Phane GT-PS100 GT-P5100_JB_Opensource_Updatel zip m =
Mobile Phone GT-P5100 GT-P5100_ICS_Opensource_Updatel zip) =
Mobile Phone GT-PS100 GT-P5100_ICS_Opensource.zip @ =

Tivoization:

o Free, copyleft bootup software
e Modified versions release

e Signed binaries for verified boot

Case study:
e Samsung Galaxy Tab 2
e X-Loader SPL

x-loader/SecureBootSign.pl:

$RemoteServerl
$RemoteServer2

= "10.254.124.52";

= "10.90.13.36";

$handle = 10:: Socket :: INET—>new (" $RemoteServer:80”) or $newerr=1;

$handle—>send ("GET_http://$RemoteServer/SigningKey .php?model=$modelname&type=
$runtype&filename=$input_filename&filepath=%$ftp_sub_path&prefix=$prefix&
viewtype=$viewtype&ppa=$config_filename HTTP/1.0");

Tivoization:
o Free, copyleft bootup software
e Modified versions release

e Signed binaries for verified boot

Case study:
e Samsung Galaxy Tab 2
e X-Loader SPL

Oh, the irony!

Licenses:
e GPLv3

Software is everywhere:

e Main processor: Bootup, TEE, System

e Management processors: ME, IMC, SMU, BMC. ..

e Auxiliary processors: GPU, VPU, DSP. ..
Controllers: EC, xHCI, multimedia, battery. ..
Peripherals: Wi-Fi, bluetooth, GPS, webcam. ..

Verified boot:
e Main processor: common (ARM)
e Management processors: common
e Auxiliary processors: increasing (GPUs)

Controllers: uncommon

Peripherals: uncommon

Freedom and privacy/security everywhere?

Reconciling Freedom and Security

Reconciling Freedom and Security

General-Purpose Possibility

Verified boot with free software example:
e Free bootup software (Coreboot)
¢ Payload with PGP verification (GRUB)
e Storage set read-only (or hidden)

e External access to storage

Platform assumptions:
e No signature verification from bootrom

e Ability to lock the storage (access/write/regions)

Possible with non-Bootguard x86 platforms!
(with Coreboot support)

W25Q40BW
=/ / winbond !/

3. PIN CONFIGURATION SOIC/VSOP 150-MiL, SOIC 208-MIL

Top View
/Cs |01 8 |1 vce
Do (lo,) | 2 7 || MHoLD (10,
WP (I0,) | 3 6 |3 CLK
GND || 4 5 |3 DI(I0,)

Figure 1a. W25Q40BW Pin Assignments, 8-pin SOIC 150-mil/208-mil, VSOP 150-mil (Package Code SN & SV)

Write-protect (WP) pin:
e Reliable root of integrity!
e Physical switch
e Solder it to ground

Reconciling Freedom and Security

CrOS Security Model and Devices

CrOS security design:
e Reliable, scalable verified boot for CPU and EC
e Does not cover external access (evil maid)

e Free software, user-friendly

Chain of trust:
e SPI flash write-protect root of trust
e The screw: write-protect switch
e RO early stages, keys and recovery
e RW (verified) next stages and kernel

Software components: Replacing software and keys:

e Bootup software: Coreboot
generate keys

e Payload: Depthcharge J
e Verified boot: Vboot build depthcharge, coreboot and ec
v

e EC firmware: Chrome EC e o

Boot modes: rAem/ove the@
e Normal mode flash internally flash externally

e Recovery mode N

insert the screw

e Developer mode l

boot!

Boot path:

RO bootblock
RO verstage
RW next stages
RO to RW EC
Internal kernel

No interaction

ec software
sync, rw

hardware reset

l,spi flash
bootblock keys
lspi flash spi flash
verstage @
lspi flash verified rw

romstage-ramstage

lspi flash

depthcharge

linternal

kernel

Trigger:

e Verification error

e User request

Boot path:
e RO only

Boot media:
e External recovery

e Recovery keys

Recovering:

e Instructions

hardware reset

| spi flash
bootblock keys
lspi flash spi flash
L |
1 verstage i
o ____ 1
1spi flash

romstage-ramstage

lspi flash

depthcharge

lexternal recovery

kernel

ro

Enable:
e Recovery mode
e Wipes data
e CrOS root

e Crossystem

Boot path:
e RO to RW

e Kernel verification

Boot media:
e [nternal
e External

e Legacy

hardware reset
|spi flash

bootblock

lspi flash

verstage

ec software
sync, rw

lspi flash

romstage-ramstage

lspi flash_ - ’
depthcharge
P) < _ external
internal ~ <
AL Lo _______
kernel kernel

Hardware design constraints:
e SPI flash and the screw
e TPM

e Servo debug connector
Chromebooks, Chromeboxes, Chromebases, Chromebits

Platforms:
e x86: Intel Sandybridge, Haswell, Broadwell, Baytrail, Skylake
e Signed ARM: Samsung Exynos
e Unsigned ARM: Rockchip RK3288, nVidia Tegra K1

Unsigned ARM devices are great for freedom
and privacy/security!

CrOS developers community approach:

e CrOS firmware team history

Friendly, helpful developers

Contributions welcome, patch review

Source code: https://chromium.googlesource.com

Community software:
e Upstream Coreboot support
e Libreboot support: build, images, documentation

e Upstream kernel support

https://chromium.googlesource.com

Thank-You!

Questions?

Reference, interesting reads:

https
https
https
https
https
https

://www.chromium.org/chromium-os/chromiumos-design-docs
://blog.cr4.sh/2016/06/exploring-and-exploiting-lenovo.html
://coreboot.org/

://libreboot.org/

://firmwaresecurity.com/

://mjgb9.dreamwidth.org/

https://www.chromium.org/chromium-os/chromiumos-design-docs
https://blog.cr4.sh/2016/06/exploring-and-exploiting-lenovo.html
https://coreboot.org/
https://libreboot.org/
https://firmwaresecurity.com/
https://mjg59.dreamwidth.org/

