
Verified Boot and Free Software:

Reconciling Freedom and Security

Paul Kocialkowski
contact@paulk.fr

Monday July 4th 2016

Introducing Verified Boot and Related Issues

Introducing Verified Boot and Related Issues

Bootup Process

BIOS History

Basic Input/Output System:

• 1980s:
• Basic hardware initialization
• Operating system load
• BIOS interrupt calls (used by CP/M, DOS)
• Purpose: hardware abstraction
• Read-only memory

• 1990s:
• Increasing hardware complexity
• Drivers in operating systems, initialization only
• Read/write memory (updates)

• 2000s:
• Run-time services (SMM/SMI, ACPI)
• Unified Extensible Firmware Interface (UEFI)
• Back to hardware abstraction

SPI Flash?

SPI Flash

(Traditional) x86 Bootup Process

hardware reset

bootblock reset vector: 0xfffffff0

spi flash

romstage cache as ram

spi flash

ramstage ram

spi flash

smm handlers

payload

spi flash

kernel

hdd

bootloader
hdd

hdd

smi

ARM Bootup Process

hardware reset

bootrom hardwired silicon

hardwired silicon

spl sram

various

bootloader ram

various

peci

various

kernel
call

tee

smc

Trusted Execution Environment

Need for trusted run-time software:

• Operating system is flawed

• Privileged operations, hardware access

• Sensitive operations (privacy/security)

Implementing a trusted environment:

• Independent or setup by bootup software

• Cooperation with the platform (e.g. TrustZone)

• Privileged mode, interfacing (e.g. SMC)

Introducing Verified Boot and Related Issues

Software Freedom

Freedom and Privacy/Security Considerations and Issues

Bootup software considerations:

• Precedence over the system

• Runs during the system lifetime

• Loads the TEE

• Great control, abilities and user data access

• Hardware initialization knowledge

Associated issues:

• Trust and control:
• Audit (weaknesses, backdoors)
• Bug fix (delays, EOL)
• User modification

• Restrictions

• Access to knowledge

Basic Freedoms

Guarantees: basic freedoms

0. Run for any purpose

1. Study and modify

2. Redistribution

3. Redistribution of modifications

Free software is a hard requirement!

Free Bootup Software

Bootrom (ARM):

• Read-only: hardwired

• Always non-free (hardware design)

Free bootup software projects:

• Coreboot

• U-Boot, Barebox

• Libreboot

Usual non-free components:

• x86: Option ROM/VGA BIOS, CPU microcodes

• Intel x86: FSP, MRC, ME

• AMD x86: IMC, SMU, PSP

• Various firmwares (xHCI, ethernet, . . .)

Introducing Verified Boot and Related Issues

Bootup Software Verification

Early Software Verification

Security approaches distinction:

• Verified boot: to boot or not to boot

• Measured boot: state indication

Verified boot rationale:

• Read/write bootup software

• Attack surface, compromisation

• Chain of trust up to the system, handlers

Design implications:

• Early bootup software must be trusted

• Next stage validation: signatures

• Read-only signatures

Early Attempts at Integrity Preservation

Pin-driven write-protect:

• Easy to find out

• Flashrom board enables

flashrom/board enable.c:

s t a t i c i n t i n t e l p i i x 4 g p o 2 7 l o w e r (v o i d)
{

r e t u r n i n t e l p i i x 4 g p o s e t (2 7 , 0) ;
}

Platform-based approaches:

• Platform SPI access/write disable

• Protected Ranges (PRx)

Pitfalls:

• Privileged access (SMM)

• Internal controller access (ME, IMC)

• External access

• Platform-specific logic

UEFI and Secure Boot

Secure boot implementations:

• Bootloader or kernel verification

• Ships with verification keys

• Assumes it’s not compromised

User control:

• Secure boot disable?

• Replacing keys?

(Actually) Verified Boot

Strong root of trust:

• Keys in OTP memory

• Bootrom enforcing verification

Motivations:

• Multiple read/write storage

• Reliable root of trust

Implementations:

• ARM platforms

• Intel Bootguard

• Intel TXT ACM (dynamic root of trust)

Introducing Verified Boot and Related Issues

Software Freedom Issues

Incompatibility with Free Software

Issues for freedom:

• Free bootup software is impossible!

• Free TEE software is impossible!

• Free kernel is impossible!

Implications for privacy/security:

• No control, no choice for trust

• (Un)intentional weaknesses

• Ability to compromise the system, exfiltrate data:
• At boot time
• At run time: TEE, SMM/SMI, ACPI, PECI

Neither freedom, nor privacy/security :(

(Barely) Undercover Motivations

Usual scenario (Android):

• Verified SPL and bootloader

• Verified TEE

• Chain of trust break

Story time:

• LG Optimus Black

• Google Pixel C

Rationale? Anyone? It’s pronounced DRM.

Tivoization and Licenses

Tivoization:

• Free, copyleft bootup software

• Modified versions release

• Signed binaries for verified boot

Case study:

• Samsung Galaxy Tab 2

• X-Loader SPL

Tivoization and Licenses

Tivoization:

• Free, copyleft bootup software

• Modified versions release

• Signed binaries for verified boot

Case study:

• Samsung Galaxy Tab 2

• X-Loader SPL

x-loader/SecureBootSign.pl:

$RemoteServer1 = ” 1 0 . 2 5 4 . 1 2 4 . 5 2 ” ;
$RemoteServer2 = ” 1 0 . 9 0 . 1 3 . 3 6 ” ;
[. . .]
$ h a n d l e = IO : : Socket : : INET−>new (” $RemoteServer : 8 0 ”) o r $newer r =1;
$handle−>send (”GET h t t p : / / $RemoteServer / S i g n i n g K e y . php ? model=$modelname&t y p e=

$ r u n t y p e&f i l e n a m e=$ i n p u t f i l e n a m e&f i l e p a t h=$ f t p s u b p a t h&p r e f i x=$ p r e f i x&
v i e w t y p e=$ v i e w t y p e&ppa=$ c o n f i g f i l e n a m e HTTP/ 1 . 0 ”) ;

Tivoization and Licenses

Tivoization:

• Free, copyleft bootup software

• Modified versions release

• Signed binaries for verified boot

Case study:

• Samsung Galaxy Tab 2

• X-Loader SPL

Oh, the irony!

Licenses:

• GPLv3

All About the Main CPU?

Software is everywhere:

• Main processor: Bootup, TEE, System

• Management processors: ME, IMC, SMU, BMC. . .

• Auxiliary processors: GPU, VPU, DSP. . .

• Controllers: EC, xHCI, multimedia, battery. . .

• Peripherals: Wi-Fi, bluetooth, GPS, webcam. . .

Verified boot:

• Main processor: common (ARM)

• Management processors: common

• Auxiliary processors: increasing (GPUs)

• Controllers: uncommon

• Peripherals: uncommon

Freedom and privacy/security everywhere?

Reconciling Freedom and Security

Reconciling Freedom and Security

General-Purpose Possibility

Coreboot, GRUB and PGP

Verified boot with free software example:

• Free bootup software (Coreboot)

• Payload with PGP verification (GRUB)

• Storage set read-only (or hidden)

• External access to storage

Platform assumptions:

• No signature verification from bootrom

• Ability to lock the storage (access/write/regions)

Possible with non-Bootguard x86 platforms!
(with Coreboot support)

SPI Flash Write-Protect

Write-protect (WP) pin:

• Reliable root of integrity!

• Physical switch

• Solder it to ground

Reconciling Freedom and Security

CrOS Security Model and Devices

Design Guidelines

CrOS security design:

• Reliable, scalable verified boot for CPU and EC

• Does not cover external access (evil maid)

• Free software, user-friendly

Chain of trust:

• SPI flash write-protect root of trust

• The screw: write-protect switch

• RO early stages, keys and recovery

• RW (verified) next stages and kernel

The Screw

Verified Boot Software

Software components:

• Bootup software: Coreboot

• Payload: Depthcharge

• Verified boot: Vboot

• EC firmware: Chrome EC

Boot modes:

• Normal mode

• Recovery mode

• Developer mode

Replacing software and keys:

generate keys

build depthcharge, coreboot and ec

package and sign

remove the screw

flash internally flash externally

insert the screw

boot!

Normal Boot

Boot path:

• RO bootblock

• RO verstage

• RW next stages

• RO to RW EC

• Internal kernel

• No interaction

hardware reset

ro

verified rw

bootblock keys

spi flash

verstage

spi flash spi flash

romstage-ramstage

spi flash

ec software
sync, rw

depthcharge

spi flash

kernel

internal

Recovery Boot

Trigger:

• Verification error

• User request

Boot path:

• RO only

Boot media:

• External recovery

• Recovery keys

Recovering:

• Instructions

hardware reset

ro

bootblock keys

spi flash

verstage

spi flash spi flash

romstage-ramstage

spi flash

depthcharge

spi flash

kernel

external recovery

Developer Boot

Enable:

• Recovery mode

• Wipes data

• CrOS root

• Crossystem

Boot path:

• RO to RW

• Kernel verification

Boot media:

• Internal

• External

• Legacy

hardware reset

ro

verified rw

bootblock keys

spi flash

verstage

spi flash spi flash

romstage-ramstage

spi flash

ec software
sync, rw

depthcharge

spi flash

kernel

internal

kernel

external

legacy

external

Devices

Hardware design constraints:

• SPI flash and the screw

• TPM

• Servo debug connector

Chromebooks, Chromeboxes, Chromebases, Chromebits

Platforms:

• x86: Intel Sandybridge, Haswell, Broadwell, Baytrail, Skylake

• Signed ARM: Samsung Exynos

• Unsigned ARM: Rockchip RK3288, nVidia Tegra K1

Unsigned ARM devices are great for freedom
and privacy/security!

Community Support

CrOS developers community approach:

• CrOS firmware team history

• Friendly, helpful developers

• Contributions welcome, patch review

• Source code: https://chromium.googlesource.com

Community software:

• Upstream Coreboot support

• Libreboot support: build, images, documentation

• Upstream kernel support

https://chromium.googlesource.com

Thank-You!

Questions?

Reference, interesting reads:
• https://www.chromium.org/chromium-os/chromiumos-design-docs

• https://blog.cr4.sh/2016/06/exploring-and-exploiting-lenovo.html

• https://coreboot.org/

• https://libreboot.org/

• https://firmwaresecurity.com/

• https://mjg59.dreamwidth.org/

https://www.chromium.org/chromium-os/chromiumos-design-docs
https://blog.cr4.sh/2016/06/exploring-and-exploiting-lenovo.html
https://coreboot.org/
https://libreboot.org/
https://firmwaresecurity.com/
https://mjg59.dreamwidth.org/

