
Speaking about securing code,
let start with git

Anne NICOLAS - hupstream

WTF ! I don’t get how
it works !

whoami

I'm not

● A developper
● A fan of nodejs
● A member of $(projectx)'s for woman
● A singer

I'm

● A very old fan of Open Source Software
● A contributer of some Open Source projects
● One of the founder of hupstream
● Kernel Recipes conference organizer

Why this talk about git?

● I was reported to be a potential speaker by a (suri)cat(a) lover

● I've been a git trainer for 2 years: more than 150 trainees and 20 sessions
The vision of our client < 10 % know nothing about git

 50 % know how to deal with basic commands
 40 % are advanced users

What we see really >50 % know nothung about git
40 % know how to deal with basic commands
< 10 % are advanced users

● Any kind of company or administration migrating to git or setting up a new VCS

Git in Real Life: The Little Shop of Horrors

Git in real life

On web servers side

Deploying a web site on a web server
● Clone of an existing repository /branch
● Use of an unclean archive of an existing project

Non protected .git repository
● Indexes allowed
● No specific right on .git directory

Source: https://what-if.xkcd.com

On web servers side

Download .git repository
● wget --mirror <url>/mywebsite/.git/

Content of .git directory : thanks guys !
 ├── info
 ├── logs
 ├── objects

 │ ├── 0d
 │ ├── 0f
 │ ├── info
 │ └── pack
 └── refs

 ├── heads
 ├── remotes
 │ └── origin
 └── tags

git catfile p <SHA1>
git checkout <file>

Oups I dit it... (yes that's true!)

I've added a password in a git tracked file
● Clone of an existing repository /branch (git rebase -i, git filter-branch)
● Use of an unclean archive of an existing project

I've sent my private key on a public mailing-list
● Very low level of GPG and ssh knowledge
● No training for new VCS and good practice

Let's migrate to git !
● No training for people working on the project
● No policy for using git and securing code
● No defined workflow for branches

Git foundations

Git objects: some basic statements to start with

Data integrity and consistency versus data security

« Data integrity refers to maintaining and assuring the accuracy and consistency
of data over its entire life-cycle, and is a critical aspect to the design,
implementation and usage of any system which stores, processes, or retrieves
data. » - Wikipédia

« The point is the SHA-1, as far as Git is concerned, isn't even a security feature.
It's purely a consistency check. The security parts are elsewhere, so a lot of
people assume that since Git uses SHA-1 and SHA-1 is used for cryptographically
secure stuff, they think that, OK, it's a huge security feature. It has nothing at all
to do with security, it's just the best hash you can get. [...] Git uses SHA-1 not for
security [...] The security parts are elsewhere » - Linus Torvalds

Git is a decentralized VCS

● availibility
● redundancy
● Disk space management

● complex

Remote
repository

push

pull

push

push

pull

pull

Local
repository

update

update

update
commit

commit

commit

Local
repository

Local
repository

Git objects: some basic statements to start with

Stored in .git/objects

Immutable objects

● Git does not store differences but a complete file
● An existing object cannot be modified, a new one is created

Git objects

Blobs

● File content only

● Uniq identifier (SHA1)

● 2 files with same content use the same
blob

blob SIZE

all: man tex pdf

clean:
 rm -rf *~
 rm -rf BCD/*~
 rm -rf lists/*~
 rm -rf doc/*~

5e78f...

Objets Git

Trees

● Index of all blobs and trees, names, Ids
(SHA1), dates, permissions...

● Uniq identifier (SHA1)

tree SIZE

blob

blob

blob

tree

Makefile

README

src

config

5e78f

2a89b

cd20c

36ca9

12af7...

Objets Git

Commits

● A reference to a tree
● Parent commit (previous one)
● Message
● Uniq identifier (SHA1)

commit SIZE

tree

parent

committer

author

g67ha

ab89d

ennael

ennael

ef667...

The content of my
commit message

Let's put all this together...

Commiting a modification :
● A new tree
● Some new blobs (depending on the modification)
● A new commit

commit SIZE

tree

parent

committer

author

f67ba

ba89d

ennael

ennael

Commit message

tree SIZE

blob

blob

Makefile

README

5e78f

2a89b

blob SIZE

all: man tex pdf

clean:
 rm -rf *~
 rm -rf

blob SIZE

This is the
README file for
this software

8ef7a...

f67ba...

5e78f...

2a89b...

SHA1 collisions attacks

Low risks for a colision

« the use cases git is used for are more resistant against collision attacks, than
most other SHA-1 use cases. it is just a SHA1 hash, but it is a hash of a
structured data format. »

● Refers to the metadata structure of the git database
● Collision: add modification in repository without SHA1 changes
● More and more binary pieces in git repositories

Best pratice for client and server

No proper identity policy, no commit

Identification based on user account

Git account policy

● No system account
● No privileged users
● Identity is not enough to authenticate users

git config –global user.name <name>
git config –global user.mail <mail>

Signed commits and tags

Signed commit

Sign your tag

Check your commit / tag

gpg genkey
gpg listkeys
git config global user.signingkey <HASH_KEY>
git config –global user.mail <mail>
git commit S

git show <SHA1>

 git tag s <tag> [<SHA1>] m '<message>'

Signed commits and tags

More tools

Signed-off is not signature !

● Signed-off : not a GPG signature but an agreement on the license to be used

git log showsignature
git verifycommit <SHA1>
git verifytag <tag>

 git commit s

Proper policy for efficient signed commits and tags

PGP key policy

● Setup a trust chain for any project contributer to check the PGP key
● Size of the key
● Private key must be protected or revoked
● Avoid infinite validity
● Use password on key

All contributers must sign commits

What can happen in case of server attack

4th march, 2012: github

● public key security vulnerability was exploited
● it allowed to successfully commit to the master branch of the Ruby on Rails

framework repository hosted on GitHub

August 2011 : kernel.org

● An attack gave root access
● L. Torvalds has its own repository for all the project
● All contributers has a copy of the public repository
● No way to modify existing code without modifying internals or adding new objects
● « Kernel.org is only a distribution point » – Jonathan Corbet

Secure git server access

Developpers access

● SSH + key authentication
● Git shell

Secured access protocols

● Limited list of protocols
● Limited access for these protocols

Secured policy must also apply to CI

Git shell

What for
● a login shell for SSH accounts to provide restricted Git access.
● allows execution only of server-side Git commands (pull/push functionality, list of

custom commands)
● Usual tasks : list repositories, create, delete, or rename it, change descriptions and

permissions.

Configure it

Non interactive access
● -c option
● git receive-pack, git upload-pack, git upload-archive

 cp $docdir/git/contrib/gitshellcommands $HOME

Secure Server

Basic but often forgotten...

● Remove X11 forwarding
● Disable PasswordAuthentication and PermitRootLogin in /etc/ssh/sshd_config
● Enable fail2ban for SSH
● Restart SSH daemon
● Use HTTPS to access any web-based manager for git (gitlab...)
● Firewall off all other ports than 22 and 443
● Update your servers ! Including git,,,

	Diapo 1
	A picture is worth a thousand words
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27

