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WTF ! I don’t get how 
it works !



whoami

I'm not

● A developper
● A fan of nodejs 
● A member of $(projectx)'s for woman
● A singer

I'm

● A very old fan of Open Source Software 
● A contributer of some Open Source projects
● One of the founder of hupstream
● Kernel Recipes conference organizer



Why this talk about git?

● I was reported to be a potential speaker by a (suri)cat(a) lover

● I've been a git trainer for 2 years: more than 150 trainees and 20 sessions
The vision of our client < 10 % know nothing about git

    50 % know how to deal with basic commands
   40 % are advanced users

What we see really >50 % know nothung about git
40 % know how to deal with basic commands
< 10 % are advanced users

● Any kind of company or administration migrating to git or setting up a new VCS



 

Git in Real Life: The Little Shop of Horrors



 

Git in real life



On web servers side

Deploying a web site on a web server
● Clone of an existing repository /branch
● Use of an unclean archive of an existing project

Non protected .git repository
● Indexes allowed
● No specific right on .git directory

Source: https://what-if.xkcd.com



On web servers side

Download .git repository
● wget --mirror  <url>/mywebsite/.git/

Content of .git directory : thanks guys !
 ├── info
 ├── logs
 ├── objects

     │ ├── 0d
     │ ├── 0f
     │ ├── info
     │ └── pack
 └── refs

      ├── heads
      ├── remotes
          │ └── origin
      └── tags

git catfile p <SHA1>
git checkout  <file>



Oups I dit it... (yes that's true!)

I've added a password in a git tracked file
● Clone of an existing repository /branch (git rebase -i, git filter-branch)
● Use of an unclean archive of an existing project

I've sent my private key on a public mailing-list
● Very low level of GPG and ssh knowledge 
● No training for new VCS and good practice

Let's migrate to git !
● No training for people working on the project
● No policy for using git and securing code
● No defined workflow for branches



 

Git foundations



Git objects: some basic statements to start with

Data integrity and consistency versus data security

« Data integrity refers to maintaining and assuring the accuracy and consistency 
of data over its entire life-cycle, and is a critical aspect to the design, 
implementation and usage of any system which stores, processes, or retrieves 
data. »  - Wikipédia

« The point is the SHA-1, as far as Git is concerned, isn't even a security feature. 
It's purely a consistency check. The security parts are elsewhere, so a lot of 
people assume that since Git uses SHA-1 and SHA-1 is used for cryptographically 
secure stuff, they think that, OK, it's a huge security feature. It has nothing at all 
to do with security, it's just the best hash you can get. [...]  Git uses SHA-1 not for 
security [...] The security parts are elsewhere » - Linus Torvalds



Git is a decentralized VCS

● availibility
● redundancy
● Disk space management

● complex
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Git objects: some basic statements to start with

Stored in .git/objects

Immutable objects

● Git does not store differences but a complete file
● An existing object cannot be modified, a new one is created



Git objects

Blobs

● File content only

● Uniq identifier (SHA1)

● 2 files with same content use the same 
blob

blob SIZE

all:    man tex pdf
        
clean:
        rm -rf *~
        rm -rf BCD/*~
        rm -rf lists/*~
        rm -rf doc/*~

5e78f...



Objets Git

Trees

● Index of all blobs and trees, names, Ids 
(SHA1), dates, permissions...

● Uniq identifier (SHA1)

tree SIZE

blob

blob

blob

tree

Makefile

README

src

config

5e78f

2a89b

cd20c

36ca9

12af7...



Objets Git

Commits

● A reference to a tree
● Parent commit (previous one)
● Message
● Uniq identifier (SHA1)

commit SIZE

tree

parent

committer

author

g67ha

ab89d

ennael

ennael

ef667...

The content of my 
commit message



Let's put all this together...

Commiting a modification :
● A new tree
● Some new blobs (depending on the modification)
● A new commit

commit SIZE

tree

parent

committer

author

f67ba

ba89d

ennael

ennael

Commit message

tree SIZE

blob

blob

Makefile

README

5e78f

2a89b

blob SIZE

all:  man tex pdf
        
clean:
        rm -rf *~
        rm -rf 

blob SIZE

This is the 
README file for 
this software

8ef7a...

f67ba...

5e78f...

2a89b...



SHA1 collisions attacks

Low risks for a colision

« the use cases git is used for are more resistant against collision attacks, than 
most other SHA-1 use cases. it is just a SHA1 hash, but it is a hash of a 
structured data format. »

● Refers to the metadata structure of the git database
● Collision: add modification in repository without SHA1 changes
● More and more binary pieces in git repositories



 

Best pratice for client and server



No proper identity policy, no commit

Identification based on user account

Git account policy

● No system account  
● No privileged users
● Identity is not enough to authenticate users 

git config –global  user.name <name>
git config –global  user.mail <mail>



Signed commits and tags

Signed commit

Sign your tag

Check your commit / tag

gpg genkey
gpg listkeys
git config global user.signingkey <HASH_KEY>
git config –global  user.mail <mail>
git commit S

git show <SHA1>

 git tag s <tag> [<SHA1>] m '<message>'



Signed commits and tags

More tools 

Signed-off is not signature !

● Signed-off : not a GPG signature but an agreement on the license to be used

git log showsignature
git verifycommit <SHA1>
git verifytag <tag>

 git commit s



Proper policy for efficient signed commits and tags

PGP key policy

● Setup a trust chain for any project contributer to check the PGP key
● Size of the key
● Private key must be protected or revoked
● Avoid infinite validity
● Use password on key

All contributers must sign commits



What can happen in case of server attack  

4th march, 2012: github

● public key security vulnerability was exploited 
● it allowed to successfully commit to the master branch of the Ruby on Rails 

framework repository hosted on GitHub

August 2011 : kernel.org

● An attack gave root access 
● L. Torvalds has its own repository for all the project
● All contributers has a copy of the public repository
● No way to modify existing code without modifying internals or adding new objects
● « Kernel.org is only a distribution point » – Jonathan Corbet



Secure git server access

Developpers access

● SSH + key authentication
● Git shell

Secured access protocols

● Limited list of protocols
● Limited access for these protocols

Secured policy must also apply to CI



Git shell

What for
● a login shell for SSH accounts to provide restricted Git access. 
● allows execution only of server-side Git commands (pull/push functionality, list of 

custom commands)
● Usual tasks : list repositories, create, delete, or rename it, change descriptions and 

permissions.

Configure it

Non interactive access
● -c option
● git receive-pack, git upload-pack, git upload-archive 

 cp $docdir/git/contrib/gitshellcommands $HOME



Secure Server

Basic but often forgotten...

● Remove X11 forwarding
● Disable PasswordAuthentication and PermitRootLogin in /etc/ssh/sshd_config
● Enable fail2ban for SSH
● Restart SSH daemon
● Use HTTPS to access any web-based manager for git (gitlab...)
● Firewall off all other ports than 22 and 443
● Update your servers ! Including git,,,
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