
Linux system hardening thanks to systemd

Timothée Ravier

French Network and Information Security Agency (ANSSI)

RMLL 2017

Goal of this talk

Goal of this talk

◮ Increase the security of standard Linux distributions

◮ Use security features made available to userspace by the Linux kernel

◮ Take advantage of their integration into systemd

◮ Simplify deployments and help system maintenance

ANSSI Linux system hardening thanks to systemd 3/25

systemd “how-to” in three slides

systemd?

◮ Integrated in most Linux distributions as a replacement for SysVinit

◮ Handle system boot up and manage system services

◮ Responsible for environment setup for system daemons

◮ Init scripts are replaced by declarative configuration files: units

ANSSI Linux system hardening thanks to systemd 5/25

Unit?

To display the current configuration of a service:

systemctl cat php -fpm.service

/usr/lib/systemd/system/php -fpm.service

[Unit]

Description=The PHP FastCGI Process Manager

After=network.target

[Service]

Type=notify

PIDFile =/run/php -fpm/php -fpm.pid

ExecStart =/usr/bin/php -fpm --nodaemonize

PrivateTmp=true

[Install]

WantedBy=multi -user.target

ANSSI Linux system hardening thanks to systemd 6/25

Command

Unit?

To display the current configuration of a service:

systemctl cat php -fpm.service

/usr/lib/systemd/system/php -fpm.service

[Unit]

Description=The PHP FastCGI Process Manager

After=network.target

[Service]

Type=notify

PIDFile =/run/php -fpm/php -fpm.pid

ExecStart =/usr/bin/php -fpm --nodaemonize

PrivateTmp=true

[Install]

WantedBy=multi -user.target

ANSSI Linux system hardening thanks to systemd 6/25

Corresp
onding

file

Unit?

To display the current configuration of a service:

systemctl cat php -fpm.service

/usr/lib/systemd/system/php -fpm.service

[Unit]

Description=The PHP FastCGI Process Manager

After=network.target

[Service]

Type=notify

PIDFile =/run/php -fpm/php -fpm.pid

ExecStart =/usr/bin/php -fpm --nodaemonize

PrivateTmp=true

[Install]

WantedBy=multi -user.target

ANSSI Linux system hardening thanks to systemd 6/25

Who?

When?

Unit?

To display the current configuration of a service:

systemctl cat php -fpm.service

/usr/lib/systemd/system/php -fpm.service

[Unit]

Description=The PHP FastCGI Process Manager

After=network.target

[Service]

Type=notify

PIDFile =/run/php -fpm/php -fpm.pid

ExecStart =/usr/bin/php -fpm --nodaemonize

PrivateTmp=true

[Install]

WantedBy=multi -user.target

ANSSI Linux system hardening thanks to systemd 6/25

What?

How?

Unit?

To display the current configuration of a service:

systemctl cat php -fpm.service

/usr/lib/systemd/system/php -fpm.service

[Unit]

Description=The PHP FastCGI Process Manager

After=network.target

[Service]

Type=notify

PIDFile =/run/php -fpm/php -fpm.pid

ExecStart =/usr/bin/php -fpm --nodaemonize

PrivateTmp=true

[Install]

WantedBy=multi -user.target

ANSSI Linux system hardening thanks to systemd 6/25

Why?

Example: switching to an unprivileged user and group

Edit the service configuration:

systemctl edit php -fpm.service

ANSSI Linux system hardening thanks to systemd 7/25

Example: switching to an unprivileged user and group

Edit the service configuration:

systemctl edit php -fpm.service

add the following content:

[Service]

User=http

Group=www

ANSSI Linux system hardening thanks to systemd 7/25

Example: switching to an unprivileged user and group

Edit the service configuration:

systemctl edit php -fpm.service

add the following content:

[Service]

User=http

Group=www

and make those changes effective:

systemctl daemon -reload

systemctl restart php -fpm.service

ANSSI Linux system hardening thanks to systemd 7/25

Taking advantage of security features from the
Linux kernel

Filtering access to system calls using seccomp-bpf

Concept

◮ Restrict which system calls are available to a process

◮ Also applies to child processes

ANSSI Linux system hardening thanks to systemd 9/25

Filtering access to system calls using seccomp-bpf

Concept

◮ Restrict which system calls are available to a process

◮ Also applies to child processes

Example

[Service]

SystemCallFilter =~ chroot

SystemCallFilter =~ @obsolete

ANSSI Linux system hardening thanks to systemd 9/25

Filtering access to system calls using seccomp-bpf

Concept

◮ Restrict which system calls are available to a process

◮ Also applies to child processes

Example

[Service]

SystemCallFilter =~ chroot

SystemCallFilter =~ @obsolete

Beware

◮ Can be bypassed with ptrace on kernels < 4.8

◮ Solution: add a filter for the ptrace system call:

[Service]

SystemCallFilter =~ ptrace

ANSSI Linux system hardening thanks to systemd 9/25

Linux capabilities

Concept

◮ Restrict privileges granted to a process (potentially running as root)

◮ Grant a subset of root privileges to an unprivileged process

ANSSI Linux system hardening thanks to systemd 10/25

https://forums.grsecurity.net/viewtopic.php?f=7&t=2522

Linux capabilities

Concept

◮ Restrict privileges granted to a process (potentially running as root)

◮ Grant a subset of root privileges to an unprivileged process

Example

[Service]

CapabilityBoundingSet=CAP_NET_BIND_SERVICE

AmbientCapabilities=CAP_NET_BIND_SERVICE

ANSSI Linux system hardening thanks to systemd 10/25

https://forums.grsecurity.net/viewtopic.php?f=7&t=2522

Linux capabilities

Concept

◮ Restrict privileges granted to a process (potentially running as root)

◮ Grant a subset of root privileges to an unprivileged process

Example

[Service]

CapabilityBoundingSet=CAP_NET_BIND_SERVICE

AmbientCapabilities=CAP_NET_BIND_SERVICE

Beware

◮ Some capabilities are equivalent to full root privileges

◮ Avoid blacklists. Whitelist only the capabilities effectively used

For more details, see: https://forums.grsecurity.net/viewtopic.php?f=7&t=2522

ANSSI Linux system hardening thanks to systemd 10/25

https://forums.grsecurity.net/viewtopic.php?f=7&t=2522

Mount namespaces

Concept

◮ Each service can get its own filesystem hierarchy

◮ Hide arbitrary paths or turn them read-only

ANSSI Linux system hardening thanks to systemd 11/25

Mount namespaces

Concept

◮ Each service can get its own filesystem hierarchy

◮ Hide arbitrary paths or turn them read-only

Example

[Service]

InaccessiblePaths =/etc/secrets

ProtectSystem=full

ANSSI Linux system hardening thanks to systemd 11/25

Mount namespaces

Concept

◮ Each service can get its own filesystem hierarchy

◮ Hide arbitrary paths or turn them read-only

Example

[Service]

InaccessiblePaths =/etc/secrets

ProtectSystem=full

Beware

◮ Reversible if CAP_SYS_ADMIN or mount system call is available:

[Service]

CapabilityBoundingSet =~ CAP_SYS_ADMIN

SystemCallFilter =~ @mount

ANSSI Linux system hardening thanks to systemd 11/25

Getting your hands dirty (cow?)

Practical example: sandboxing the Dirty CoW

◮ Vulnerability CVE-2016-5195

◮ Local root made public in October 2016

◮ Impacted every kernel from the version 2.6.22, released in 2007

◮ Race condition in the memory management code handling Copy-on-Write

ANSSI Linux system hardening thanks to systemd 13/25

Practical example: sandboxing the Dirty CoW

Exploit vector

◮ Race condition triggered by the madvise system call

Options to mitigate the impact

◮ Block the madvise system call

Configuration

[Service]

SystemCallFilter =~ madvise

ANSSI Linux system hardening thanks to systemd 14/25

Practical example: sandboxing the Dirty CoW

Exploit vector

◮ Indirect access to memory using the ptrace system call and
/proc/self/mem

Options to mitigate the impact

◮ Block the ptrace system call

◮ Remove access to the proc virtual filesystem

Configuration

[Service]

SystemCallFilter =~ ptrace

InaccessiblePaths =/proc

See https://lists.freedesktop.org/archives/systemd-devel/2017-April/038634.html
and https://github.com/systemd/systemd/pull/5985 for more details.

ANSSI Linux system hardening thanks to systemd 15/25

https://lists.freedesktop.org/archives/systemd-devel/2017-April/038634.html
https://github.com/systemd/systemd/pull/5985

Practical example: sandboxing the Dirty CoW

Exploit vector

◮ Vulnerable code may be reachable from drivers exposed in /dev

Options to mitigate the impact

◮ Remove access to most hardware drivers available from /dev

Configuration

[Service]

PrivateDevices=yes

ANSSI Linux system hardening thanks to systemd 16/25

Practical example: The Good, the Bad and the socket

◮ Vulnerability CVE-2016-8655

◮ Local root

◮ Race condition in AF_PACKET type sockets leading to Use-After-Free in
kernel context

◮ Creating AF_PACKET sockets requires CAP_NET_RAW

◮ May be obtained via unprivileged user namespace (Linux > 3.8)

ANSSI Linux system hardening thanks to systemd 17/25

Practical example: The Good, the Bad and the socket

Exploit vector

◮ AF_PACKET sockets

Options to mitigate the impact

◮ Restrict socket type availability

Configuration

Minimal version with a blacklist:

[Service]

RestrictAddressFamilies =~ AF_PACKET

Better option using a whitelist:

[Service]

RestrictAddressFamilies=AF_INET AF_INET6 AF_UNIX

ANSSI Linux system hardening thanks to systemd 18/25

Practical example: The Good, the Bad and the socket

Exploit vector

◮ CAP_NET_RAW capability

Options to mitigate the impact

◮ Block acquisition of the CAP_NET_RAW capability

Configuration

[Service]

CapabilityBoundingSet =~ CAP_NET_RAW

ANSSI Linux system hardening thanks to systemd 19/25

Practical example: The Good, the Bad and the socket

Exploit vector

◮ Unrestricted availability of unprivileged user namespace

Options to mitigate the impact

◮ Restrict access to user namespaces

Configuration

[Service]

RestrictNamespaces =~user

Notice

◮ Requires systemd > 233

ANSSI Linux system hardening thanks to systemd 20/25

Practical example: systemd versus the crashing tweet

◮ Vulnerability CVE-2016-7795

◮ Denial of Service targeting systemd

◮ Raise an assertion in the daemon running as PID 1

◮ Pause process execution thus reducing functionality available on the
system

ANSSI Linux system hardening thanks to systemd 21/25

Practical example: systemd versus the crashing tweet

Exploit vector

◮ Incorrect handling of empty notification events sent through
/run/systemd/notify

Options to mitigate the impact

◮ Restrict access to the /run/systemd/notify socket

Configuration

[Service]

InaccessiblePaths =/run/systemd

ANSSI Linux system hardening thanks to systemd 22/25

Conclusion

Conclusion

◮ Simplified interface to help setup kernel security features

◮ Easy to setup and maintain

◮ Does not replace applying updates

◮ Hardening features applied only to system services

ANSSI Linux system hardening thanks to systemd 24/25

Thank you

Contact:

B timothee.ravier@ssi.gouv.fr

travier@mastodon.etalab.gouv.fr

7 @siosm

mailto:timothee.ravier@ssi.gouv.fr?X-Origin=SlidesRMLL2017&Subject=Slides RMLL 2017
https://mastodon.etalab.gouv.fr/@travier
https://twitter.com/siosm

	Goal of this talk
	systemd ``how-to'' in three slides
	Taking advantage of security features from the Linux kernel
	Getting your hands dirty (cow?)

