HydraBus An Open Source Platform

HydraBus/HydraFW GitHub

- Hardware / Schematics on GitHub (format Eagle 6.x/7.x)
 - https://github.com/hydrabus/hydrabus
 - License CC-BY-NC
- Firmware HydraFW Wiki on GitHub
 - https://github.com/hydrabus/hydrafw/wiki
 - Apache License
 - External libraries use their own license

HydraFW

- HydraFW is the embedded software/firmware for HydraBus hardware (support also hw extensions like HydraNFC/HydraFlash...)
- It is compatible with Bus Pirate commands: http://dangerousprototypes.com/docs/Bus_Pirate_me nu_options_guide#Bus_interaction_commands

FW=FirmWare

HydraBus & The IoT

Communication with external world / IoT

- Serial Port (USART/UART)
- I2C Bus: Slow Bus, sensors, memories...
- CAN/LIN Bus: Slow Bus, sensors (mainly automotive)
- SPI Bus: Fast Bus Wifi / BlueTooth / NFC...
- SD/SDIO (microSD, SDIO Bluetooth/Wifi...)
- USB Bus
- ADC & DAC (Analog <=> Digital)
- GPIO (Input/Output)
- Parallel Bus (Nand Flash)

What to do with an HydraBus ?

- The HydraBus is 40x faster than a BusPirate or an Arduino Uno, which is very convenient in order to communicate with fast signals (Serial/Parallel...)
- MCU HydraBus: STM32F415@168MHz Cortex M4F 32bits, 44/IO (84MHz max), 1MB flash, 192KB SRAM, power consumption < 100mA (less than 2mA with low power mode)
- Use cases
 - "Speak" with electronic device/chipset
 - Sensors like Wifi module(ESP32), NFC, Nand Flash, EEPROM...
 - Arduino (SPI, UART ...)
 - "Spy" (MITM) electronic device (SPI/UART/CAN Bus...)
 - Spy Car(CAN), IoT gadgets...
 - "Analyze" signals (analog or digital) with the help of SUMP protocol and open source software like sigrok / PulseView
 - "Reverse engineering" electronic device (IoT ...)
 - Router(WRT54G JTAG, UART), Car, RFID(NFC...), Smart Lighting...

HydraFW main console commands

- Commands OS (chibios): show system/memory/threads
- Commands sdcard (sd): mount/umount, erase, cd <dir>, pwd, ls [opt dir], test_perf, cat <filename>, hd <filename>, rm <filename>, mkdir <filename>, script <filename>
- Commands: ADC/DAC, PWM, GPIO
- Bus Modes: SPI, I2C, UART, JTAG, 1-2&3 wire, CAN (HydraCAN), Flash (HydraFlash), NFC (HydraNFC)

HydraFW Bus Mode protocol Interaction

- Protocol Interaction (similar commands for any protocol support)
 - [Start (for SPI, I2C means Enable Chip Select)
 -] Stop (for SPI, I2C means Disable Chip Select)
 - : Repeat (e.g. r:10)
 - & DELAY us (support optional repeat :)
 - % DELAY ms (support optional repeat :)
 - **123 0x12 0b110 "hello"** Write 8bits val/string (support optional repeat :)
 - **r** Read or **hd** HexDump (support optional repeat :)
 - During a blocking read or write which wait for data(for example Slave mode) you can abort the wait by pressing HydraBus UBTN, else you can also wait timeout which is about 10s.
 - Example: HexDump of an SPI EEPROM: [0b11 0 hd:32]

Use cases

What is IoT ?

- Device somehow connected to a smartphone or to the Internet
- Which can be an embedded GNU/Linux system or a proprietary firmware
- Which is a SoC or a microcontroller with peripherals or sensors
- Which basically is a bunch of chips communicating with each other

Bug hunting IoT

- Primary target : Device firmware
 - Main source of vulnerabilities found there
- Not always accessible from the vendor website
 - Firmware update can be encrypted
- Hidden interfaces can be available
 - Serial console or debugging interfaces

Case 1

- Home router
- Crack open the case
- Undoubtely the trickiest part in the process

Components

- List main components
 - Read their serial number, search for datasheets

\$CHIP1

- Serial number : RT63365e
- Search for serial number online
 - « ADSL2+ processor for residential gateways »
 - MIPS architecture
 - No flash memory
 - Firmware must be stored elsewhere
- Let's skip this for the moment

\$CHIP2

- Serial number : 25q16bvsig
- Search for serial number online
 - SPI EEPROM
- Electrically-Erasable Programmable Read Only Memory
 - Memory array
 - Data is stored even if the chip is not powered
 - Used to store data
- Probable firmware location !

SPI

- Serial Peripheral Interface
- Bus topology
- Four wires
 - SCLK (Clock)
 - MISO (Master In/Slave Out)
 - MOSI (Master Out/Slave In)
 - SS (Slave Select)

Connect EEPROM to Hydrabus

- From datasheet, get the chip pinout
- From Hydrabus CLI, get the SPI pins
 - show pins
- Wire everything together
 - Either wires, hooks or clip

Send EEPROM commands

- Read datasheet, and send correct read command.
- Display hex dump of content

Figure 8. Read Data Instruction Sequence Diagram

```
> spi
Device: SPI1
GPI0 resistor: floating
Mode: master
Frequency: 320khz (650khz, 1.31mhz, 2.62mhz, 5.25mhz, 10.50mhz, 21mhz, 42mhz)
Polarity: 0
Phase: 0
Bit order: MSB first
spi1> [ 0x03 0x00:3 hd:16 ]
/CS ENABLED
WRITE: 0x03 0x00 0x00 0x00
00 00 08 25 00 00 10 25 00 00 18 25 00 00 20 25 | ...%...%...%...%
/CS DISABLED
spi1>
```

Dump the whole image

- Reading bytes is fine to prove that everything is working
- Now, create a script that dumps the whole EEPROM in a file

```
import serial
import struct
ser = serial.Serial('/dev/hydrabus', 115200)
for i in xrange(20):
    ser.write("\x00")
if "BBI01" not in ser.read(5):
    print "Could not get into bbIO mode"
    Ouit()
ser.write('\x01')
if "SPI1" not in ser.read(4):
    print "Cannot set SPI mode"
    quit()
addr = 0
buff=''
print "Reading data"
while (addr < 4096*size):
    ser.write('\x04\x00\x04\x10\x00')
    ser.write('\x03')
    ser.write(struct.pack('>L', addr)[1:])
    ser.read(1)
    buff += ser.read(4096)
    addr+=4096
print ""
end = time.time()
out = open('/tmp/image.bin','w')
out.write(buff)
out.close()
```

Result

```
$ strings image.bin
[...]
ATHE
          print help
ATBA
          change baudrate. 1:38.4k, 2:19.2k, 3:9.6k 4:57.6k
Х
5:115.2k
ATEN
          set BootExtension Debug Flag (y=password)
x, (y)
ATSE
          show the seed of password generator
ATTT
(h,m,s)
          change system time to hour:min:sec or show current time
ATDA
          change system date to year/month/day or show current
(y,m,d)
date
ATDS
          dump RAS stack
ATDT
          dump Boot Module Common Area
ATDU
          dump memory contents from address x for length y
x,y
[...]
```

Signal analysis

- Some unused headers are visible, but we don't know what they are used for
 - Labelled RX1 / TX1
- Use the logic analyzer function

Logic analyzer

- Analyses digital signals
 - Only logic states
- Usually coupled with a PC software
 - Decodes logic signals to values
- Captures *n* samples
 - Capture start can be triggered

Signal analysis

- Connect those headers to Hydrabus
- Open Pulseview, setup the capture
- Search through the available decoders to find a match
 - Requires experience / tests to recognize the protocols

UART Bridge

- Hydrabus can act as a USB / UART bridge
 - In UART mode, use the bridge command
- Serial console is now available on the router

Result

Bootbase Version: VTC_SPI1.22 | 2012/4/12 16:30:00 RAM: Size = 8192 Kbytes Found SPI Flash 2MiB Winbond W25016 at 0xbfc00000 SPI Flash Quad Enable Turn off Quad Mode RAS Version: 3.0.0 Build 120524 Rel.05221 System ID: \$2.12.58.23(G04.BZ.4)3.20.17.0| 2012/05/18 20120518 V003 | 2012/05/18 Press any key to enter debug mode within 3 seconds. Enter Debug Mode ATHE ====== Debug Command Listing ====== just answer OK AT ATHE print help change baudrate. 1:38.4k, 2:19.2k, 3:9.6k 4:57.6k 5:115.2k ATBAX ATENx, (v) set BootExtension Debug Flag (y=password) ATSE show the seed of password generator ATTI(h,m,s) change system time to hour:min:sec or show current time change system date to year/month/day or show current date ATDA(y,m,d) ATDS dump RAS stack ATDT dump Boot Module Common Area ATDUx, y dump memory contents from address x for length y ATRBX display the 8-bit value of address x ATRWX display the 16-bit value of address x display the 32-bit value of address x ATRLX ATGO(x) run program at addr x or boot router ATGR boot router ATGT run Hardware Test Program ATRTw, x, y(, z) RAM test level w, from address x to y (z iterations) dump manufacturer related data in ROM ATSH download from address x for length y to PC via XMODEM ATD0x,y download router configuration to PC via XMODEM ATTD upload router firmware to flash ROM ATUR

RHME2 Challenge

RHME2 - Whac The Mole

- Whac The Mole Challenge
 - https://github.com/hydrabus/rhme-2016/blob/master/Other/Whac kTheMole.md

RHME2 - Whac The Mole

• Whac The Mole Challenge with Logic Analyzer

		00s +1.02s +2.04s +3.07	s +4.09s +5.11s +6.13s	+7.16s +8.18s +9.1			+18.40s +19.42s
0:UART	r 0 D	0:UART: RX/TX					
UART	<u></u>	•				<u> </u>	
PULSE	<u></u> x						
D2	<u></u> 2						
D3	<u></u>	<u> </u>					
D4	<u></u>	<u>></u>					
D5	5-1_1 ⁵	<u> </u>					
D6	5-1_1 6	<u></u>					
D7	<u></u> 7	D					
D8	5-1_1 8						
D9	<u></u>						
D 10	<u></u>						
D11	<u></u>	<u></u>					
D12	<u></u>	2					

RHME2 - Secret Sauce

- Secret Sauce Challenge
 - This challenge ask for a password so the idea was to recover it using a timing attack with the help of HydraBus
 - https://github.com/hydrabus/rhme-2016/blob/maste r/Other/SecretSauce.md

RHME2 - Fiasco (Fault Injection)

- This challenge ask for a password and the idea is to do a VCC Glitch on the Arduino board in order to skip/jump over the check and display the flag
 - Results with HydraBus + Custom Board with MOSFET
 - Please write your password: gpio glitch trigger PB0 pin PC15 length 100 offsets 191200 Good try, cheater!^M Chip locked^M
 - Please write your password: gpio glitch trigger PB0 pin PC15 length 100 offsets 191300 Chip unlocked^M Your flag is: 02ab16ab3729fb2c2ec313e4669d319e
 - https://github.com/hydrabus/rhme-2016/blob/master/FaultInjecti on/Fiasco.md

Case 2

- Unspecified board, sorry
- Uses CC2530 microcontroller
- Debug port available
 - Uses custom debugging protocol
 - No ccDebugger at hand at that time

Protocol details

- Application note found on TI website
- Simple two wire protocol
 - Clock / Data
 - Master drives the clock
 - Data channel is bidirectional

http://www.ti.com/lit/an/swra410/swra410.pdf

Dumping

• Using 2-wire mode, able to communicate with the chip and dump its flash memory

Result

Shields

HydraNFC

HydraBus+HydraNFC Firmware

- Actual Firmware features (HydraFW):
 - Read UID NFC Vicinity/ISO15693 and Mifare
 - Read Data on Mifare UL
 - Emulation ISO14443A/Mifare UL/Classic (Alpha)
 - Sniffer ISO14443A with unique hard real-time infinite trace mode (requires FTDI external hw & PC with hydratool sw)
 - Autonomous sniffer ISO14443A (Mifare ...) include data from TAG & READER (data saved in microSD)
 - HydraFW HydraNFC online guide see:
 - https://github.com/hydrabus/hydrafw/wiki/HydraFW-HYDRANFC-guide

Sniffer real-time infinite trace mode

Sniffer PC GUI (Qt5)

• HydraTool v0.3.1.0 (Windows/Linux)

E hydratool v0.3.1.0 - 16 June 2017 (Based on Qt5.7.0)							
HydraNFC real-time sniffer HW Setup Link							
Find RegEx: RDR 26 RDR 52 Live REQA_WUPA History depth: 100000 Load Save Save DirectToDisk							
1 9A09E5F6 RDR 26 (delta 15884) 9A0A2402 2 9A0A4F48 TAG 44 03 (delta 31742) 9A0ACB46 3 9AE16EE0 RDR F0 25 D4 00 19 9D 84 D2 78 13 96 0C A6 10 00 00 03 246 66 6D 01 01 11 02 02 9 9B178428 RDR FF							
HydraNFC Find result							
9A09E5F6 RDR 26 (delta 15884) 9A0A2402 9B48783B RDR 26 (delta 15884) 9B48B647 9BA1916D RDR 26 (delta 15884) 9BA1CF79 9C7D43CC RDR 52 (delta 15897) 9C7D81E5							

HydraFlash

- Designed to dump Flash NAND chips
 - Found in more and more devices
- No hardware support from the MCU
 - Uses GPIO in bitbang mode

HydraFlash

- Uses a fork of DumpFlash to handle commands
 - Some manufacturers use different commands
 - Already manages OOB
- Decent reading and writing speeds
 - ~200KB/s on test chip

```
$ python2 DumpFlash.py -d /dev/hydrabus -i
Into BBIO mode
Switching to flash mode
Setting chip enable
Full ID: AD73AD73AD73
ID Length:
               6
Name:
              NAND 16MiB 3,3V 8-bit
              0x73
ID:
              0x200
Page size:
OOB size:
              0x10
              0x8000
Page count:
Size:
               0x10
Erase size: 0x4000
Block count: 1024
Options:
               0
Address cycle: 3
Bits per Cell: 4
Manufacturer: Hynix
```

HydraFlash – Fun facts

- Got some flash chips from eBay
- Branded as new
- Unfortunately, no juicy information :(

```
$strings /tmp/dump
[...]
Media is write-protected!
FCU failed on ECC/CRC error!
FCU general error!
FCU%s timed out!
Burst
'Copyright (c) 1996-2004 Express Logic Inc.
* FileX LX4180/Green Hills Version G3.1a.3.1a *
/home/sandbox/sde/lib/c/time/offtime.c
/home/sandbox/sde/lib/c/time/tzfile.h
### Battery Check : byPowerOnLevelAfterDummy = %
Battery Check : NiMH Battery
                             Battery_Check : BEFORE LENS MOVE
Battery_Check : sBattery.byLevel
< BAT NO MOVE LENS LEVEL
[...]
```

HydraLINCAN

- Designed to handle CAN and LIN buses communication
 - Mostly found in automotive
- Made by smillier
- Already tested on my car
 - Still alive ;-)

HydraLINCAN

- CLI and BBIO already
 implemented and working
- SLCAN implementation is underway
 - Able to use all utilities provided by can-utils

Alternative firmwares

- Micropython
 - Python 3.x for microcontrollers
 - Official support
 - http://micropython.org
- BlackMagic
 - JTAG/SWD probe / GDB server
 - Official support
 - https://github.com/blacksphere/blackmagic

Project status

- Lots of added features last year
 - Frequency measurement
 - Hexdump mode
 - 1-wire mode
 - AVR programming
 - NAND Flash support
 - Hex escapes
 - ...

Project status – cont.

- Project is getting close to 1.0
 - Will be the first stable version
 - Some modes need to be added to provide full set of features
 - I2c slave mode
 - Data sniffers
 - I2c
 - [1,2,3]-wire

Hydrabus Workshop

- Tomorrow afternoon, open to all
- Many different activities
 - HydraFW hackathon
 - Hydrabus kits offered for first 2 merged PRs made during RMLL
 - Test Hydrabus on practice targets
 - Learn signal analysis
 - Get yours !

Conclusions

- Hydrabus will not replace dedicated tools
- However, nice all-in-one device that can be used for hackers and makers for quick prototyping and development
- Still requires some technical background to be used efficiently

Thank you !

Shameless promotion

- Blackalps
 - Security conference
 - Yverdon, Switzerland
 - November 2017
 - CFP open until 31.07.2017

http://www.blackalps.ch