From bottom to top:
Exploiting hardware side channels in web browsers

Clémentine Maurice, Graz University of Technology
July 4, 2017—RMLL, Saint-Etienne, France

@
il
S :
Plymouth ¢ B
g‘.\ <h Channei P

EHRQ,nneS
Jersey - A&
Paris
@
Brest.
< Res
N e
—_“Nan\tes [
" France

I'a Rachlle

Clémentine Maurice
PhD since October 2015
from Rennes, France

Lo ©
Prague \\%Katuwiveﬂ Krakow

Czech Republic

N, b
uremberg

@) e
Slovakia

, Salleburg

@

e Hungary

now postdoc at TU Graz, Austria
Secure Systems group

+ Secure Systems team: Daniel Gruss, Michael Schwarz, Peter Pessl

Introduction

- safe software infrastructure does not mean safe execution

Introduction

- safe software infrastructure does not mean safe execution
- information leaks because of the underlying hardware

Introduction

- safe software infrastructure does not mean safe execution
- information leaks because of the underlying hardware

- these vulnerabilities can also be exploited at a high level

Introduction

- safe software infrastructure does not mean safe execution
- information leaks because of the underlying hardware

- these vulnerabilities can also be exploited at a high level
« like a web browser

Introduction

- safe software infrastructure does not mean safe execution
- information leaks because of the underlying hardware
- these vulnerabilities can also be exploited at a high level

+ like a web browser

- because JavaScript is nothing more than code executing on your machine :)

1. What are micro-architectural side channels?

1. What are micro-architectural side channels?

2. How can | use DRAM to create a covert channel?

1. What are micro-architectural side channels?
2. How can | use DRAM to create a covert channel?

3. How can | do that in JavaScript?!

1 [4)

Sources of leakage

 no “bug” in the sense of a mistake — lots of performance optimizations

Sources of leakage

 no “bug” in the sense of a mistake — lots of performance optimizations
- via power consumption, electromagnetic leaks

Sources of leakage

Controller

Rikomagic MK802 TV SDR receiver

FUNcube

Dongle Pro
Loop antenna

Power

- 4xAA batteries
MicroSD card xAA batteries

WiFi

antenna

Antenna tuning capacitor S 2 2 . ;
. s ————— Pita bread

Sources of leakage

 no “bug” in the sense of a mistake — lots of performance optimizations
- via power consumption, electromagnetic leaks
— targeted attacks, physical access

Sources of leakage

 no “bug” in the sense of a mistake — lots of performance optimizations
- via power consumption, electromagnetic leaks

— targeted attacks, physical access
- via shared hardware and microarchitecture

Sources of leakage

+ no “bug” in the sense of a mistake — lots of performance optimizations
- via power consumption, electromagnetic leaks

— targeted attacks, physical access
- via shared hardware and microarchitecture

— remote attacks

Shared hardware

shared hardware

/\

memory CPU
DRAM memory branch arithmetic data and
bus prediction logic instruction

unit unit cache

DRAM and side channels

DRAM organization

DRAM organization

channel o
—

Cotey
Corem '/

L
channel 1

DRAM organization

back of DIMM: rank 1

front of DIMM:
rank o

Cotey
Corem '/

DRAM organization

back of DIMM: rank 1

front of DIMM:
rank o

Cotey
Corem '/

DRAM organization

I

I

I

bank o
chip

row o
row 1
row 2

row 32767

row buffer |-

DRAM organization

chip

I

I

I

bank o

row o

row 1

row 2

row 32767

row buffer

T

64k cells
1 capacitor,
1 transitor each

DRAM row buffer

- DRAM internally is only capable of reading entire rows

DRAM row buffer

- DRAM internally is only capable of reading entire rows
- capacitors in cells discharge when you “read the bits”
- buffer the bits when reading them from the cells

- write the bits back to the cells when you're done

DRAM row buffer

- DRAM internally is only capable of reading entire rows
- capacitors in cells discharge when you “read the bits”
- buffer the bits when reading them from the cells
- write the bits back to the cells when you're done

— row buffer

How reading from DRAM works

DRAM bank

CPU wants to access row 1
111111111111 11

11111111111111

() 111111111111 11

Corenyy

1111111111111 1

111111111111 11

row buffer

10

How reading from DRAM works

activate
—_—

Corenyy

DRAM bank

1111111111111 1

11111111111111

111111111111 11

1111111111111 1

111111111111 11

row buffer

CPU wants to access row 1

— row 1 activated

10

How reading from DRAM works

DRAM bank

CPU wants to access row 1
111111111111 11

— row 1 activated
— row 1 copied to row buffer

11111111111111

() 111111111111 11

Corenyy

1111111111111 1

copy

111111111111 11

row buffer

10

How reading from DRAM works

DRAM bank

CPU wants to access row 1
111111111111 11

— row 1 activated
— row 1 copied to row buffer

11111111111111

() 111111111111 11

Coren

1111111111111 1

return

111111111111 11

row buffer

10

How reading from DRAM works

DRAM bank

CPU wants to access row 2
111111111111 11

11111111111111

() 111111111111 11

Corenyy

1111111111111 1

111111111111 11

row buffer

10

How reading from DRAM works

DRAM bank

CPU wants to access row 2
111111111111 11

— row 2 activated
111111111111 11

activate

() 111111111111 11

Corenyy

1111111111111 1

111111111111 11

row buffer

10

How reading from DRAM works

DRAM bank

CPU wants to access row 2
111111111111 11

— row 2 activated
— row 2 copied to row buffer

11111111111111

() 111111111111 11

Corer»

1111111111111 1

copy
111111111111 11

row buffer

10

How reading from DRAM works

DRAM bank

CPU wants to access row 2
111111111111 11

— row 2 activated
— row 2 copied to row buffer

11111111111111

() 111111111111 11

Core

1111111111111 1

return

111111111111 11

row buffer

10

How reading from DRAM works

DRAM bank

CPU wants to access row 2
111111111111 11

— row 2 activated
— row 2 copied to row buffer

11111111111111

() 111111111111 11

Corer»

— slow (row conflict)
1111111111111 1

111111111111 11

row buffer

10

How reading from DRAM works

DRAM bank

CPU wants to access row 2—again
111111111111 11

11111111111111

(@) 111111111111 11

Corenyy

1111111111111 1

111111111111 11

row buffer

10

How reading from DRAM works

DRAM bank

CPU wants to access row 2—again
111111111111 11

— row 2 already in row buffer
111111111111 11

() 111111111111 11

Corenyy

1111111111111 1

111111111111 11

row buffer

10

How reading from DRAM works

DRAM bank

CPU wants to access row 2—again
111111111111 11

— row 2 already in row buffer
111111111111 11

() 111111111111 11

Coren

1111111111111 1

return

111111111111 11

row buffer

10

How reading from DRAM works

DRAM bank

1111111111111 1

11111111111111

111111111111 11

1111111111111 1

111111111111 11

row buffer

CPU wants to access row 2—again
— row 2 already in row buffer

— fast (row hit)

10

How reading from DRAM works

DRAM bank

1111111111111 1

11111111111111

inte]) 111111111111 11

Corer ;>

11111111111111 row buffer = cache

111111111111 11

row buffer

10

DRAM timing differences

Cache hit M Cache miss, row hit M cache miss, row conflict

=
(@)
~

=
o
G

-
o
w

Number of cases

-
2

1 1 1 1 1 1 1 1 1
72 84 96 108 120 132 144 156 168 180 192 204 216 228 240 252 264 276 288
Access time [CPU cycles]

DRAM timing differences

Cache hit M Cache miss, row hit M cache miss, row conflict

=
(@)
~

=
o
G

-
o
w

Number of cases

-
2

1 1 1 1 1 1 1 1 1
72 84 96 108 120 132 144 156 168 180 192 204 216 228 240 252 264 276 288
Access time [CPU cycles]

DRAM side channels?

« row buffers are caches

12

https://github.com/IAIK/drama

DRAM side channels?

« row buffers are caches

- we can observe timing differences

12

https://github.com/IAIK/drama

DRAM side channels?

- row buffers are caches
- we can observe timing differences

- how to exploit these timing differences?

12

https://github.com/IAIK/drama

DRAM side channels?

- row buffers are caches

- we can observe timing differences

- how to exploit these timing differences?

- target addresses in the same channel, rank and bank

12

https://github.com/IAIK/drama

DRAM side channels?

- row buffers are caches

- we can observe timing differences

- how to exploit these timing differences?

- target addresses in the same channel, rank and bank

- but DRAM mapping functions are undocumented

12

https://github.com/IAIK/drama

DRAM side channe

- row buffers are caches
- we can observe timing differences
- how to exploit these timing differences?
- target addresses in the same channel, rank and bank
- but DRAM mapping functions are undocumented
— we reverse-engineered them! © https://github.com/IAIK/drama

P. Pessl et al. “DRAMA: Exploiting DRAM Addressing for Cross-CPU Attacks”. In: USENIX Security Symposium. 2016

12

https://github.com/IAIK/drama

DRAMA: DRAM Addressing attacks

- infer behavior from memory accesses similarly to cache attacks

13

DRAMA: DRAM Addressing attacks

- infer behavior from memory accesses similarly to cache attacks

« works across VMs, across cores, across CPUs

13

DRAMA: DRAM Addressing attacks

- infer behavior from memory accesses similarly to cache attacks
« works across VMs, across cores, across CPUs
+ covert channels and side-channel attacks

13

DRAMA: DRAM Addressing attacks

- infer behavior from memory accesses similarly to cache attacks
« works across VMs, across cores, across CPUs

« covert channels and side-channel attacks
- covert channel: two processes communicating with each other
+ not allowed to do so, e.g., across VMs

13

DRAMA: DRAM Addressing attacks

- infer behavior from memory accesses similarly to cache attacks

« works across VMs, across cores, across CPUs

« covert channels and side-channel attacks

- covert channel: two processes communicating with each other
+ not allowed to do so, e.g., across VMs

- side-channel attack: one malicious process spies on benign processes
- e.g., spies on keystrokes

13

DRAMA covert channel

DRAM bank .
: : sender and receiver agree on one bank

00000000/ 00000000 receiver continuously accesses a row i

00000000 |OOOOOOOO

00000000||0O0O0OOOOOO

00000000 ||0O0OOOOOOO

[00000000|[00000000]

| row buffer ‘

14

DRAMA covert channel

activate

DRAM bank

00000000

00000000

00000000

00000000

00000000

00000000

[00000000|[00000000]

[00000000|[00000000]

{00000000h00000000]

copy

sender and receiver agree on one bank
receiver continuously accesses a row i

14

DRAMA covert channel

DRAM bank .
: : sender and receiver agree on one bank

00000000/ 00000000 receiver continuously accesses a row i

00000000 |OOOOOOOO

case #1: sender transmits 1
00000000 | 0OOO0OO00OOO

00000000 ||0O0OOOOOOO

[00000000|[00000000

{00000000h 00000000

14

DRAMA covert channel

DRAM bank .
: sender and receiver agree on one bank

00000000/ 00000000 receiver continuously accesses a row i

activate 00000000/ /00000000

case #1: sender transmits 1
sender accesses row j # i

00000000||0O0O0OOOOOO

00000000 ||0O0OOOOOOO

copy

‘OOOOOOOOHOOOOOOOO‘

{00000000h00000000]

14

DRAMA covert channel

DRAM bank .
: sender and receiver agree on one bank

00000000/ 00000000 receiver continuously accesses a row i

00000000 |OOOOOOOO

case #1: sender transmits 1
sender accesses row j # i

00000000||0O0O0OOOOOO

00000000 ||0O0OOOOOOO

‘OOOOOOOOHOOOOOOOO‘

[00000000h 00000000

14

DRAMA covert channel

activate

DRAM bank

00000000||0O0O0O0O0O0OOO

00000000 |OOOOOOOO

00000000||0OO0O0O0O0OOO

[00000000|[00000000]

‘OOOOOOOOHOOOOOOOO‘

{00000000h00000000]

copy

sender and receiver agree on one bank
receiver continuously accesses a row i

case #1: sender transmits 1
sender accesses row j # i
next receiver access — copy row buffer

14

DRAMA covert channel

DRAM bank .
: sender and receiver agree on one bank

00000000/ 00000000 receiver continuously accesses a row i

00000000 |OOOOOOOO

case #1: sender transmits 1
sender accesses row j # i

00000000||0O0O0OOOOOO

00000000 ||0O0OOOOOOO

next receiver access — copy row buffer

— slow

‘OOOOOOOOHOOOOOOOO‘

v {00000000h 00000000

14

DRAMA covert channel

DRAM bank .
: : sender and receiver agree on one bank

00000000/ 00000000 receiver continuously accesses a row i

00000000 |OOOOOOOO

case #2: sender transmits o
00000000|{00000000

00000000 ||0O0OOOOOOO

[00000000|[00000000

{00000000h 00000000

14

DRAMA covert channel

DRAM bank .
: sender and receiver agree on one bank

00000000/ 00000000 receiver continuously accesses a row i

00000000 |OOOOOOOO

case #2: sender transmits o
sender does nothing

00000000||0O0O0OOOOOO

00000000 ||0O0OOOOOOO

‘OOOOOOOOHOOOOOOOO‘

{00000000h 00000000

14

DRAMA covert channel

activate

DRAM bank

00000000||0O0O0O0O0O0OOO

00000000 |OOOOOOOO

00000000||0OO0O0O0O0OOO

[00000000|[00000000]

‘OOOOOOOOHOOOOOOOO‘

{00000000h 00000000

sender and receiver agree on one bank
receiver continuously accesses a row i

case #2: sender transmits o
sender does nothing
next receiver access — already in buffer

14

DRAMA covert channel

DRAM bank .
: sender and receiver agree on one bank

00000000/ 00000000 receiver continuously accesses a row i

00000000 |OOOOOOOO

case #2: sender transmits o
sender does nothing

00000000||0O0O0OOOOOO

00000000 ||0O0OOOOOOO

next receiver access — already in buffer

— fast

‘OOOOOOOOHOOOOOOOO‘

™~ {00000000h 00000000

14

Two applications can covertly communicate with each other
But can we use that for spying?

DRAMA side-channel attacks

DRAM bank

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

‘OOOOOOOOHOOOOOOOO

! row buffer

spy and victim share a row i

16

DRAMA side-channel attacks

activate

DRAM bank

3

OOOOOOOOHOOOOOOOO

00000000

00000000

00000000

00000000

00000000

00000000

‘OOOOOOOOHOOOOOOOO‘

000000005 00000000]

spy and victim share a row i

case #1
Spy accesses row j # i, copy to row buffer

16

DRAMA side-channel attacks

activate
—_

DRAM bank

OOOOOOOOHOOOOOOOO

00000000

00000000

00000000

00000000

00000000

00000000

‘OOOOOOOOHOOOOOOOO‘

000000005 00000000]

spy and victim share a row i

case #1
Spy accesses row j # i, copy to row buffer
victim accesses row i, copy to row buffer

16

DRAMA side-channel attacks

DRAM bank . .
. spy and victim share a row i

OOOOOOOOHOOOOOOOO

i case #1
—jgﬂ§i>00000000 00000000

Spy accesses row j # i, copy to row buffer
00000000 | 0O0OOCO0OOOO

victim accesses row i, copy to row buffer
00000000 ||0O000O00O00O0OO

Spy accesses row i, no copy

‘OOOOOOOOHOOOOOOOO

”ooooooooHooooooooH

16

DRAMA side-channel attacks

DRAM bank . .
. ’ spy and victim share a row i

00000000 0O00OCO0OOOO

case #1
Spy accesses row j # i, copy to row buffer

00000000 0O0O0OO0OOOO

00000000 |OOOOOOOO

victim accesses row i, copy to row buffer
00000000 ||0O000O00O00O0OO

Spy accesses row i, no copy

— fast

‘OOOOOOOOHOOOOOOOO

AN ”ooooooooHooooooooH

16

DRAMA side-channel attacks

activate

DRAM bank

3

OOOOOOOOHOOOOOOOO

00000000

00000000

00000000

00000000

00000000

00000000

‘OOOOOOOOHOOOOOOOO‘

000000005 00000000]

spy and victim share a row i

case #2
Spy accesses row j # i, copy to row buffer

16

DRAMA side-channel attacks

DRAM bank . .
. ’ spy and victim share a row i

00000000 0O00OCO0OOOO

case #2
00000000 | O0O0O0O0OOOO

Spy accesses row j # i, copy to row buffer
00000000 | 0O0OOCO0OOOO

no victim access on row |
00000000 ||0O000O00O00O0OO

‘OOOOOOOOHOOOOOOOO

”ooooooooHooooooooH

16

DRAMA side-channel attacks

activate
—_

DRAM bank

OOOOOOOOHOOOOOOOO

00000000

00000000

00000000

00000000

00000000

00000000

‘OOOOOOOOHOOOOOOOO‘

000000005 00000000]

spy and victim share a row i

case #2

Spy accesses row j # i, copy to row buffer
no victim access on row i

spy accesses row i, copy to row buffer

16

DRAMA side-channel attacks

DRAM bank . .
. spy and victim share a row i

00000000 0O00OCO0OOOO

case #2
Spy accesses row j # i, copy to row buffer

00000000 0O0O0OO0OOOO

00000000 |OOOOOOOO

no victim access on row i
spy accesses row i, copy to row buffer

00000000 |0OOOOOOOO

— slow

‘OOOOOOOOHOOOOOOOO

e ”ooooooooHooooooooH

16

Spying on keystrokes on the Firefox URL bar

- side-channel: template attack
- allocate a large fraction of memory to be in a row with the victim
+ profile memory and record row-hit ratio for each address

T T T T T T T

300e ° ° *
o 0000 000 ¢0° 0040, 0 00g © 0 ¢ o %0 ° e oo
=
‘S 250 =
A
I} o) °
S 200 L ° o9 ° e o L o 00 o =
<

w w W f a c eboo k. com
1507 | | | | | | | |
o 2 4 6 8 10 12 14

Time in seconds

17

I'm sure we'll need to write a lot of C code
At least we're safe with JavaScript!

Member Rowhammer.js?

DRAM covert channels in JavaScript?

Why JavaScript?

- JavaScript is code executed in a sandbox

20

Why JavaScript?

- JavaScript is code executed in a sandbox

- can’t do anything nasty since it is in a sandbox, right?

20

Why JavaScript?

- JavaScript is code executed in a sandbox

- can’t do anything nasty since it is in a sandbox, right?
- except side channels are only doing benign operations

20

Why JavaScript?

- JavaScript is code executed in a sandbox

- can’t do anything nasty since it is in a sandbox, right?
- except side channels are only doing benign operations
1. accessing their own memory

20

Why JavaScript?

- JavaScript is code executed in a sandbox

- can’t do anything nasty since it is in a sandbox, right?
- except side channels are only doing benign operations

1. accessing their own memory
2. measuring time

20

Challenges with JavaScript

L ®
‘¢‘ B
° 0

1. No knowledge about 2. No instruction to 3. No high-resolution
physical addresses flush the cache timers

21

#1. No knowledge about physical addresses

- OS optimization: use Transparent Huge Pages (THP, 2MB pages)
last 21 bits (2MB) of physical address
« = last 21 bits (2MB) of virtual address

22

#1. No knowledge about physical addresses

- OS optimization: use Transparent Huge Pages (THP, 2MB pages)
last 21 bits (2MB) of physical address
« = last 21 bits (2MB) of virtual address

— which JS array indices?

22

#1. Obtaining the beginning of a THP

Y

(@)
)
I

Y
@]
N
T

Access time [ns]
-—
o
~
T

o} 2 4 6 8 10 12
Array index [MB]

- physical pages for these THPs are mapped on-demand

— page fault when an allocated THP is accessed for the first time

D. Gruss et al. “Practical Memory Deduplication Attacks in Sandboxed JavaScript”. In: ESORICS'15. 2015.

23

#1. Choosing physical addresses

- we now know the last 21 bits of physical addresses
- enough for most systems, e.g., Sandy Bridge with DDR3

BAO ¢ 4
BAL « 4
BA2 « De
Rank ¢ |
...,22,21,20,19,18,17,16,15,14,13,12/11,10,9,8,7,6, ...

|

Ch. ¢

¥

'S

24

#2. No instruction to flush the cache

CcPU
core
l « measure DRAM timing
CPU . ;
cache only non-cached accesses reach DRAM

l * no clflush instruction

— evict data with other memory accesses
DRAM

25

#2. Bypassing the CPU cache: Basic idea

- evicting cache line only using memory accesses

cache set | | | | | | | | |

D. Gruss et al. “Rowhammer.js: A Remote Software-Induced Fault Attack in JavaScript”. In: DIMVA16. 2016.

26

#2. Bypassing the CPU cache: Basic idea

- evicting cache line only using memory accesses

peo]

cache set

D. Gruss et al. “Rowhammer.js: A Remote Software-Induced Fault Attack in JavaScript”. In: DIMVA16. 2016.

26

#2. Bypassing the CPU cache: Basic idea

- evicting cache line only using memory accesses

peo]

cache set

D. Gruss et al. “Rowhammer.js: A Remote Software-Induced Fault Attack in JavaScript”. In: DIMVA16. 2016.

26

#2. Bypassing the CPU cache: Basic idea

- evicting cache line only using memory accesses

peoj

cache set

D. Gruss et al. “Rowhammer.js: A Remote Software-Induced Fault Attack in JavaScript”. In: DIMVA16. 2016.

26

#2. Bypassing the CPU cache: Basic idea

- evicting cache line only using memory accesses

peoj

cache set

D. Gruss et al. “Rowhammer.js: A Remote Software-Induced Fault Attack in JavaScript”. In: DIMVA16. 2016.

26

#2. Bypassing the CPU cache: Basic idea

- evicting cache line only using memory accesses

peoj

cache set

D. Gruss et al. “Rowhammer.js: A Remote Software-Induced Fault Attack in JavaScript”. In: DIMVA16. 2016.

26

#2. Bypassing the CPU cache: Basic idea

- evicting cache line only using memory accesses

peoj

cache set

D. Gruss et al. “Rowhammer.js: A Remote Software-Induced Fault Attack in JavaScript”. In: DIMVA16. 2016.

26

#2. Bypassing the CPU cache: Basic idea

- evicting cache line only using memory accesses

“peor

cache set

D. Gruss et al. “Rowhammer.js: A Remote Software-Induced Fault Attack in JavaScript”. In: DIMVA16. 2016.

26

#2. Bypassing the CPU cache: Basic idea

- evicting cache line only using memory accesses

le————
peo)

cache set

D. Gruss et al. “Rowhammer.js: A Remote Software-Induced Fault Attack in JavaScript”. In: DIMVA16. 2016.

26

#2. Bypassing the CPU cache: Basic idea

- evicting cache line only using memory accesses

cache set | | | | | | | | |

- it's a bit more complicated than that: replacement policy is not LRU

D. Gruss et al. “Rowhammer.js: A Remote Software-Induced Fault Attack in JavaScript”. In: DIMVA16. 2016.

26

#2. Bypassing the CPU cache: Basic idea

- evicting cache line only using memory accesses

cache set | | | | | | | | |

- it's a bit more complicated than that: replacement policy is not LRU

- but we already solved this problem before :)

D. Gruss et al. “Rowhammer.js: A Remote Software-Induced Fault Attack in JavaScript”. In: DIMVA16. 2016.

26

#3. High-resolution timers?

- measure small timing differences: need a high-resolution timer

27

#3. High-resolution timers?

- measure small timing differences: need a high-resolution timer

+ native: rdtsc, timestamp in CPU cycles

27

#3. High-resolution timers?

- measure small timing differences: need a high-resolution timer
+ native: rdtsc, timestamp in CPU cycles

» JavaScript: performance.now() has the highest resolution

27

#3. High-resolution timers?

- measure small timing differences: need a high-resolution timer
- native: rdtsc, timestamp in CPU cycles

» JavaScript: performance.now() has the highest resolution

performance.now()

[...] represent times as floating-point numbers with up to microsecond
precision. — Mozilla Developer Network

27

High-resolution timers in JavaScript

It was better before

- before September 2015: performance.now() had a nanosecond resolution

Y. Oren et al. “The Spy in the Sandbox: Practical Cache Attacks in JavaScript and their Implications”. In: CCS'15. 2015.
https://www.mozilla.org/en-US/security/advisories/mfsa2015-114/

28

https://www.mozilla.org/en-US/security/advisories/mfsa2015-114/

It was better before

- before September 2015: performance.now() had a nanosecond resolution
- Oren et al. demonstrated cache side-channel attacks in JavaScript

Y. Oren et al. “The Spy in the Sandbox: Practical Cache Attacks in JavaScript and their Implications”. In: CCS'15. 2015.
https://www.mozilla.org/en-US/security/advisories/mfsa2015-114/

28

https://www.mozilla.org/en-US/security/advisories/mfsa2015-114/

It was better before

- before September 2015: performance.now() had a nanosecond resolution
- Oren et al. demonstrated cache side-channel attacks in JavaScript

- “fixed” in Firefox 41: rounding to 5 s

Y. Oren et al. “The Spy in the Sandbox: Practical Cache Attacks in JavaScript and their Implications”. In: CCS"15. 2015.
https://www.mozilla.org/en-US/security/advisories/mfsa2015-114/

28

https://www.mozilla.org/en-US/security/advisories/mfsa2015-114/

Microsecond precision?

Firefox < 41 (1ns) [1-1073

29

Microsecond precision?

Edge 38 (1ps) [11

Firefox < 41 (1ns) [1-1073

29

Microsecond precision?

W3C standard (5 ps) | | 5

Edge 38 (1ps) [11

Firefox < 41 (1ns) [1-1073

29

Microsecond precision?

Firefox > 41/Chrome/Safari (5 ps) | | 5

W3C standard (5 ps) | | 5

Edge 38 (1ps) [|1

Firefox < 41 (1ns) [1-1073

29

Microsecond precision?

Tor (1ooms) | ' 1-10°

Firefox > 41/Chrome/Safari (sps) |5
W3C standard (sps) |5
Edge 38 (1ps) |1

Firefox < 41 (1ns) [1-1073

29

Microsecond precision?

Fuzzyfox (1ooms) | 1 1.-10°

Tor (1ooms) | 1 1.-10°

Firefox > 41/Chrome/Safari (sps) |5
W3C standard (sps) |5
Edge 38 (1ps) |1

Firefox < 41 (1ns) [1-1073

D. Kohlbrenner et al. “Trusted Browsers for Uncertain Times”. In: USENIX Security Symposium. 2016

29

We can do better!

 microsecond resolution is not enough

M. Schwarz et al. “Fantastic Timers and Where to Find Them: High-Resolution Microarchitectural Attacks in JavaScript”. In: FC'17. 2017.

30

We can do better!

 microsecond resolution is not enough
- two approaches

M. Schwarz et al. “Fantastic Timers and Where to Find Them: High-Resolution Microarchitectural Attacks in JavaScript”. In: FC'17. 2017.

30

We can do better!

 microsecond resolution is not enough
- two approaches
1. recover a higher resolution from the available timer

M. Schwarz et al. “Fantastic Timers and Where to Find Them: High-Resolution Microarchitectural Attacks in JavaScript”. In: FC'17. 2017.

30

We can do better!

 microsecond resolution is not enough
- two approaches

1. recover a higher resolution from the available timer
2. build our own high-resolution timer

M. Schwarz et al. “Fantastic Timers and Where to Find Them: High-Resolution Microarchitectural Attacks in JavaScript”. In: FC'17. 2017.

30

Recovering resolution: Clock interpolation

« measure how often we can increment a variable between two timer ticks

31

Recovering resolution: Clock interpolation

« measure how often we can increment a variable between two timer ticks

31

Recovering resolution: Clock interpolation

« measure how often we can increment a variable between two timer ticks

+1 +1 1 1 1 1 41 A

31

Recovering resolution: Clock interpolation

« measure how often we can increment a variable between two timer ticks

+1 +1 +1 1 1 1 41 A

31

Recovering resolution: Clock interpolation

« measure how often we can increment a variable between two timer ticks

+1 +1 +1 1 1 1 41 A

- to measure with high resolution

31

Recovering resolution: Clock interpolation

« measure how often we can increment a variable between two timer ticks

+1 +1 +1 1 1 1 41 A

+ to measure with high resolution
+ start measurement at clock edge

31

Recovering resolution: Clock interpolation

« measure how often we can increment a variable between two timer ticks

+1 +1 +1 1 1 1 41 A

+ to measure with high resolution

+ start measurement at clock edge
+ increment a variable until next clock edge

31

Recovering resolution: Clock interpolation

« measure how often we can increment a variable between two timer ticks

+1 +1 +1 1 1 1 41 A

+ to measure with high resolution

+ start measurement at clock edge
+ increment a variable until next clock edge

« Firefox/Chrome: 500 ns, Tor: 15 s

31

Recovering resolution: Edge thresholding

- often sufficient to just see which of two functions takes longer

32

Recovering resolution: Edge thresholding

- often sufficient to just see which of two functions takes longer

32

Recovering resolution: Edge thresholding

- often sufficient to just see which of two functions takes longer

32

Recovering resolution: Edge thresholding

- often sufficient to just see which of two functions takes longer

’ Fstow ‘Paddiing‘

’ Srast ‘Padding‘

— padding so the slow function crosses one more clock edge than the fast one

32

Recovering resolution: Edge thresholding

& 100 87 199 82 :
iy
=
S 50| |
o 13 18
T olE o MO |
I I I
unaligned aligned padded

I both correct

0of, 0, misclassified

ffast Misclassified

83

Recovering resolution: Edge thresholding

& 100 87 199 82 :
iy
=
S 50| |
o 13 18
T olE o MO |
I I I
unaligned aligned padded

I both correct

+ nanosecond resolution

0of, 0, misclassified ffast misclassified

83

Recovering resolution: Edge thresholding

7
g 100 87 o0 82)
iy
=
S 50| |
o 13 18
T olE o MO |
I I I
unaligned aligned padded

liboth correct [0y, misclassified 7 frps misclassified

+ nanosecond resolution
- Firefox/Tor: 2 ns, Edge: 10 ns, Chrome: 15 ns

83

- goal: counter that does not block main thread

34

- goal: counter that does not block main thread

- baseline setTimeout: 4 ms (except Edge: 2 ms)

34

- goal: counter that does not block main thread
- baseline setTimeout: 4 ms (except Edge: 2 ms)
« CSS animation — increase width of element as fast as possible

34

- goal: counter that does not block main thread

- baseline setTimeout: 4 ms (except Edge: 2 ms)

« CSS animation — increase width of element as fast as possible
- timestamp = width of element

34

- goal: counter that does not block main thread

- baseline setTimeout: 4 ms (except Edge: 2 ms)

« CSS animation — increase width of element as fast as possible
- timestamp = width of element

« but animation limited to 60fps — 16 ms resolution

34

Building a timer: Web worker

- JavaScript can spawn new threads called web worker

85

Building a timer: Web worker

- JavaScript can spawn new threads called web worker

- web worker communicate using message passing

85

Building a timer: Web worker

« JavaScript can spawn new threads called web worker
- web worker communicate using message passing
- let worker count and request timestamp in main thread

85

Building a timer: Web worker

« JavaScript can spawn new threads called web worker
- web worker communicate using message passing
- let worker count and request timestamp in main thread

+ possibilities: postMessage, MessageChannel Or BroadcastChannel

85

Building a timer: Web worker

« JavaScript can spawn new threads called web worker

- web worker communicate using message passing

- let worker count and request timestamp in main thread

+ possibilities: postMessage, MessageChannel Or BroadcastChannel
- microsecond resolution (even on Tor and Fuzzyfox)

85

Building a timer: Web worker

- experimental feature to share data: SharedArrayBuffer

36

Building a timer: Web worker

- experimental feature to share data: SharedArrayBuffer
- web worker can simultaneously read/write data

36

Building a timer: Web worker

- experimental feature to share data: SharedArrayBuffer
- web worker can simultaneously read/write data

+ no message passing overhead

36

Building a timer: Web worker

« experimental feature to share data: SharedArrayBuffer
- web worker can simultaneously read/write data
+ no message passing overhead

- one dedicated worker for incrementing the shared variable

36

Building a timer: Web worker

« experimental feature to share data: SharedArrayBuffer

- web worker can simultaneously read/write data

+ no message passing overhead

- one dedicated worker for incrementing the shared variable
« Firefox/Fuzzyfox: 2 ns, Chrome: 15 ns

36

Building a timer: Is it good enough?

[0 cache hit [0 cache miss

w
o
(@]
T
!

Number of cases
N
o)
o
T
|

‘ n_fﬁﬂﬂﬂﬂ H nllopnn

I
T T 1 1 1
300 350 400 450 500 550 600 650 700 750

Access time [SharedArrayBuffer increments]

37

Building a timer: Is it good enough?

[0 cache hit [0 cache miss

w
o
(@]
T
!

Number of cases
N
o)
o
T
|

‘ n_fﬁﬂﬂﬂﬂ H nllopnn

I
1
300 350 400 450 500 550 600 650 700 750
Access time [SharedArrayBuffer increments]

— we can distinguish cache hits from cache misses (only ~ 150 cycles difference)!

37

ONE DOES NDTSIMP» '

P
__GETRID OF Gllll}I(S

Bonus: What else can we do with this?

- idea is not new: Wray (1992)
- we also exploited it in other contexts

« on ARM
+ inside an SGX enclave

J. C. Wray. “An analysis of covert timing channels”. In: Journal of Computer Security 1.3-4 (1992), pp. 219-232.
M. Lipp et al. “ARMageddon: Cache Attacks on Mobile Devices”. In: USENIX Security Symposium. 2016.
M. Schwarz et al. “Malware Guard Extension: Using SGX to Conceal Cache Attacks”. In: DIMVA'17. 2017.

39

DRAM covert channels in JavaScript!

- sender: native application in a VM

40

- sender: native application in a VM

- receiver: JavaScript in a web page on the host

40

- sender: native application in a VM
- receiver: JavaScript in a web page on the host

« sender and receiver select the same bank

40

- sender: native application in a VM

- receiver: JavaScript in a web page on the host

- sender and receiver select the same bank

- sender and receiver select a different row inside this bank

40

- sender: native application in a VM

- receiver: JavaScript in a web page on the host

- sender and receiver select the same bank

- sender and receiver select a different row inside this bank

- sender transmits 0 by doing nothing and 1 by causing row conflict

40

- sender: native application in a VM

- receiver: JavaScript in a web page on the host

- sender and receiver select the same bank

- sender and receiver select a different row inside this bank

- sender transmits 0 by doing nothing and 1 by causing row conflict

+ receiver measures access time for its row: fast — 0, slow — 1

40

Sending packets

EDC

- communication based on 11-bit packets, with 5-bit of data

{51

Sending packets

EDC

- communication based on 11-bit packets, with 5-bit of data

+ packet starts with a 2-bit -

{51

Sending packets

EDC

- communication based on 11-bit packets, with 5-bit of data

+ packet starts with a 2-bit -

- data integrity checked by an error-detection code

151

Sending packets

EDC

- communication based on 11-bit packets, with 5-bit of data

+ packet starts with a 2-bit -

- data integrity checked by an error-detection code

- 'sequence bit indicates whether it is a retransmission or a new packet

151

- transmission of approximately 11bits/s

42

- transmission of approximately 11bits/s
- can be improved using

42

« transmission of approximately 11bits/s
- can be improved using
- fewer re-transmits

42

« transmission of approximately 11bits/s
- can be improved using

+ fewer re-transmits
 error correction

42

« transmission of approximately 11bits/s
- can be improved using

- fewer re-transmits
* error correction
+ multithreading — multiple banks in parallel

42

« transmission of approximately 11bits/s
- can be improved using

- fewer re-transmits
* error correction
+ multithreading — multiple banks in parallel

» native code: 596 kbit/s cross CPU and cross VM

42

@ ©/ Mozllla Firefox Start Page- Mozilla Firefox
@ Mozilla Firefox Start Page % | e

L4

Q

‘The Mars Exploration Rover is currently mapping the Red Planet.
Firefox s another name for a Red Panda. Coincidence? Definitely.

+ X O & O

Downloads Bookmarks History Add-ons sync Preferences

@ Restore Previous Session

@ Untitled [modified] - Kate
file Edit View Projects Bookmarks Sessions Tools Settings Help

ONew L3 0pen | a PreviousDocument 6 Next Document | feof Sve | Sovers | @) lose 95) undo

Firefox on hosta
VM without network

Projects [[2 Documents

213 Ra [uning - rade VM Vit 1]

e Machine Input Devices Help

=

QoS @Q b
B TpamViawar
side-channel attack

Conclusion

- information leaks because of the underlying hardware

4t

- information leaks because of the underlying hardware

- vulnerabilities exploitable at the browser level

4t

- information leaks because of the underlying hardware
- vulnerabilities exploitable at the browser level

« running arbitrary JavaScript allows building high-resolution timers

4t

- information leaks because of the underlying hardware

- vulnerabilities exploitable at the browser level

« running arbitrary JavaScript allows building high-resolution timers
- hard to mitigate without reducing functionality

4t

Thank you!

Contact

¥ clementine@cmaurice.fr

¥ @BloodyTangerine

From bottom to top:
Exploiting hardware side channels in web browsers

Clémentine Maurice, Graz University of Technology
July 4, 2017—RMLL, Saint-Etienne, France

	DRAM and side channels
	DRAM covert channels in JavaScript?
	High-resolution timers in JavaScript
	DRAM covert channels in JavaScript!
	Conclusion

