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Introduction

• safe so�ware infrastructure does not mean safe execution

• information leaks because of the underlying hardware
• these vulnerabilities can also be exploited at a high level
• like a web browser
• because JavaScript is nothing more than code executing on your machine :)
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Outline

1. What are micro-architectural side channels?

2. How can I use DRAM to create a covert channel?

3. How can I do that in JavaScript?!
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Sources of leakage

• no “bug” in the sense of a mistake→ lots of performance optimizations

• via power consumption, electromagnetic leaks

→ targeted attacks, physical access

• via shared hardware and microarchitecture

→ remote attacks
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DRAM and side channels



DRAM organization

channel 0
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DRAM organization

chip
bank 0

row 0
row 1
row 2

. . .
row 32767

row bu�er

64k cells
1 capacitor,

1 transitor each
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DRAM row bu�er

• DRAM internally is only capable of reading entire rows

• capacitors in cells discharge when you “read the bits”
• bu�er the bits when reading them from the cells
• write the bits back to the cells when you’re done
→ row bu�er
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How reading from DRAM works

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1
. . .

1 1 1 1 1 1 1 1 1 1 1 1 1 1

row bu�er

CPU wants to access row 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1
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How reading from DRAM works

DRAM bank

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1
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DRAM timing di�erences
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DRAM side channels?

• row bu�ers are caches

• we can observe timing di�erences
• how to exploit these timing di�erences?
• target addresses in the same channel, rank and bank
• but DRAM mapping functions are undocumented
→ we reverse-engineered them! � https://github.com/IAIK/drama

P. Pessl et al. “DRAMA: Exploiting DRAM Addressing for Cross-CPU Attacks”. In: USENIX Security Symposium. 2016
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DRAMA: DRAM Addressing attacks

• infer behavior from memory accesses similarly to cache attacks

• works across VMs, across cores, across CPUs
• covert channels and side-channel attacks
• covert channel: two processes communicating with each other

• not allowed to do so, e.g., across VMs

• side-channel attack: one malicious process spies on benign processes

• e.g., spies on keystrokes
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DRAMA covert channel

DRAM bank
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row bu�er

sender and receiver agree on one bank
receiver continuously accesses a row i
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Two applications can covertly communicate with each other
But can we use that for spying?
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Spying on keystrokes on the Firefox URL bar

• side-channel: template attack
• allocate a large fraction of memory to be in a row with the victim
• pro�le memory and record row-hit ratio for each address

0 2 4 6 8 10 12 14
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200

250

300

w w w . f a c e b o o k . c o m

Time in seconds
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I’m sure we’ll need to write a lot of C code
At least we’re safe with JavaScript!



Member Rowhammer.js?



DRAM covert channels in JavaScript?



Why JavaScript?

• JavaScript is code executed in a sandbox

• can’t do anything nasty since it is in a sandbox, right?
• except side channels are only doing benign operations

1. accessing their own memory
2. measuring time
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Challenges with JavaScript

1. No knowledge about
physical addresses

2. No instruction to
�ush the cache

3. No high-resolution
timers

21



#1. No knowledge about physical addresses

• OS optimization: use Transparent Huge Pages (THP, 2MB pages)
• = last 21 bits (2MB) of physical address
• = last 21 bits (2MB) of virtual address

→ which JS array indices?
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#1. Obtaining the beginning of a THP

0 2 4 6 8 10 12 14
102

104

106

Array index [MB]

Ac
ce

ss
tim

e
[n

s]

• physical pages for these THPs are mapped on-demand
→ page fault when an allocated THP is accessed for the �rst time

D. Gruss et al. “Practical Memory Deduplication Attacks in Sandboxed JavaScript”. In: ESORICS’15. 2015.
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#1. Choosing physical addresses

• we now know the last 21 bits of physical addresses
• enough for most systems, e.g., Sandy Bridge with DDR3

...678911 1012131416171819202122...

BA0
BA1
BA2

Ch.

15

Rank

24



#2. No instruction to �ush the cache

CPU
core

CPU
cache

DRAM

• measure DRAM timing
• only non-cached accesses reach DRAM
• no clflush instruction
→ evict data with other memory accesses

25



#2. Bypassing the CPU cache: Basic idea

• evicting cache line only using memory accesses

cache set

• it’s a bit more complicated than that: replacement policy is not LRU
• but we already solved this problem before :)

D. Gruss et al. “Rowhammer.js: A Remote So�ware-Induced Fault Attack in JavaScript”. In: DIMVA’16. 2016.
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#3. High-resolution timers?

• measure small timing di�erences: need a high-resolution timer

• native: rdtsc, timestamp in CPU cycles
• JavaScript: performance.now() has the highest resolution

performance.now()

[...] represent times as �oating-point numbers with up to microsecond
precision. — Mozilla Developer Network
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High-resolution timers in JavaScript



It was better before

• before September 2015: performance.now() had a nanosecond resolution

• Oren et al. demonstrated cache side-channel attacks in JavaScript
• “�xed” in Firefox 41: rounding to 5 µs

Y. Oren et al. “The Spy in the Sandbox: Practical Cache Attacks in JavaScript and their Implications”. In: CCS’15. 2015.
https://www.mozilla.org/en-US/security/advisories/mfsa2015-114/

28

https://www.mozilla.org/en-US/security/advisories/mfsa2015-114/


It was better before

• before September 2015: performance.now() had a nanosecond resolution
• Oren et al. demonstrated cache side-channel attacks in JavaScript

• “�xed” in Firefox 41: rounding to 5 µs

Y. Oren et al. “The Spy in the Sandbox: Practical Cache Attacks in JavaScript and their Implications”. In: CCS’15. 2015.
https://www.mozilla.org/en-US/security/advisories/mfsa2015-114/

28

https://www.mozilla.org/en-US/security/advisories/mfsa2015-114/


It was better before

• before September 2015: performance.now() had a nanosecond resolution
• Oren et al. demonstrated cache side-channel attacks in JavaScript
• “�xed” in Firefox 41: rounding to 5 µs

Y. Oren et al. “The Spy in the Sandbox: Practical Cache Attacks in JavaScript and their Implications”. In: CCS’15. 2015.
https://www.mozilla.org/en-US/security/advisories/mfsa2015-114/

28

https://www.mozilla.org/en-US/security/advisories/mfsa2015-114/


Microsecond precision?

Firefox < 41 (1 ns)

Edge 38 (1 µs)

W3C standard (5 µs)

Firefox ≥ 41/Chrome/Safari (5 µs)

Tor (100 ms)

Fuzzyfox (100 ms)

1 · 10−3

1

5

5

0

0

1 · 10−3

D. Kohlbrenner et al. “Trusted Browsers for Uncertain Times”. In: USENIX Security Symposium. 2016
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We can do better!

• microsecond resolution is not enough

• two approaches
1. recover a higher resolution from the available timer
2. build our own high-resolution timer

M. Schwarz et al. “Fantastic Timers and Where to Find Them: High-Resolution Microarchitectural Attacks in JavaScript”. In: FC’17. 2017.
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Recovering resolution: Clock interpolation

• measure how o�en we can increment a variable between two timer ticks

+1 +1 +1 +1 +1 +1 +1 +1 +1

• to measure with high resolution

• start measurement at clock edge
• increment a variable until next clock edge

• Firefox/Chrome: 500 ns, Tor: 15 µs
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Recovering resolution: Edge thresholding

• o�en su�cient to just see which of two functions takes longer

→ padding so the slow function crosses one more clock edge than the fast one
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Recovering resolution: Edge thresholding
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• nanosecond resolution
• Firefox/Tor: 2 ns, Edge: 10 ns, Chrome: 15 ns
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Building a timer

• goal: counter that does not block main thread

• baseline setTimeout: 4 ms (except Edge: 2 ms)
• CSS animation→ increase width of element as fast as possible
• timestamp = width of element
• but animation limited to 60 fps→ 16 ms resolution
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Building a timer: Web worker

• JavaScript can spawn new threads called web worker

• web worker communicate using message passing
• let worker count and request timestamp in main thread
• possibilities: postMessage, MessageChannel or BroadcastChannel
• microsecond resolution (even on Tor and Fuzzyfox)
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Building a timer: Web worker

• experimental feature to share data: SharedArrayBuffer

• web worker can simultaneously read/write data
• no message passing overhead
• one dedicated worker for incrementing the shared variable
• Firefox/Fuzzyfox: 2 ns, Chrome: 15 ns

36



Building a timer: Web worker

• experimental feature to share data: SharedArrayBuffer
• web worker can simultaneously read/write data

• no message passing overhead
• one dedicated worker for incrementing the shared variable
• Firefox/Fuzzyfox: 2 ns, Chrome: 15 ns

36



Building a timer: Web worker

• experimental feature to share data: SharedArrayBuffer
• web worker can simultaneously read/write data
• no message passing overhead

• one dedicated worker for incrementing the shared variable
• Firefox/Fuzzyfox: 2 ns, Chrome: 15 ns

36



Building a timer: Web worker

• experimental feature to share data: SharedArrayBuffer
• web worker can simultaneously read/write data
• no message passing overhead
• one dedicated worker for incrementing the shared variable

• Firefox/Fuzzyfox: 2 ns, Chrome: 15 ns

36



Building a timer: Web worker

• experimental feature to share data: SharedArrayBuffer
• web worker can simultaneously read/write data
• no message passing overhead
• one dedicated worker for incrementing the shared variable
• Firefox/Fuzzyfox: 2 ns, Chrome: 15 ns

36



Building a timer: Is it good enough?
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cache hit cache miss

→ we can distinguish cache hits from cache misses (only ≈ 150 cycles di�erence)!
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Take-away
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Bonus: What else can we do with this?

• idea is not new: Wray (1992)
• we also exploited it in other contexts

• on ARM
• inside an SGX enclave

J. C. Wray. “An analysis of covert timing channels”. In: Journal of Computer Security 1.3-4 (1992), pp. 219–232.
M. Lipp et al. “ARMageddon: Cache Attacks on Mobile Devices”. In: USENIX Security Symposium. 2016.
M. Schwarz et al. “Malware Guard Extension: Using SGX to Conceal Cache Attacks”. In: DIMVA’17. 2017.
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DRAM covert channels in JavaScript!



Setup

• sender: native application in a VM

• receiver: JavaScript in a web page on the host
• sender and receiver select the same bank
• sender and receiver select a di�erent row inside this bank
• sender transmits 0 by doing nothing and 1 by causing row con�ict
• receiver measures access time for its row: fast→ 0, slow→ 1
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Sending packets

0 1 2 3 4 5 6 7 8 9 10

10 Data EDC
S
e
q

• communication based on 11-bit packets, with 5-bit of data

• packet starts with a 2-bit preamble

• data integrity checked by an error-detection code
• sequence bit indicates whether it is a retransmission or a new packet

41
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Thank you!

Contact

R clementine@cmaurice.fr

7 @BloodyTangerine
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